文章编号:1672-6553-2024-22(2)-077-008

约束 Green 函数与非线性地基梁模态分析*

赵翔¹⁺ 王琦¹ 朱伟东² 李映辉³ (1. 西南石油大学土木工程与测绘学院,成都 610500)

(2. 马里兰大学 机械工程系,巴尔的摩县 MD21250)(3. 西南交通大学 力学与工程学院,成都 610000)

摘要 在生物和医学领域,微机电系统(MEMS)中的微梁结构在植入人体的使用时,由于体内的细胞环境 类似于水凝胶,在这种环境下工作,设备和仪器的精度和稳定性很大程度上受到细胞弹性的影响.为了分析 此类地基梁的动力学问题,本文建立了非线性基础上的梁振动模型,研究了任意位置弹簧和非线性弹簧基 础上的梁模态.通过 Laplace 变换和线性叠加原理,得到了一种约束 Green 函数,利用数值计算验证方案的 有效性,并研究了各种重要物理参数的影响,发现弹簧位置向跨中移动时,模态对称性被打破,弹簧刚度增 加,模态阶数改变.

关键词 约束 Green 函数, Laplace 变换, 非线性弹簧基础, 模态分析, 叠加原理中图分类号:O313文献标志码:A

Constrained Green Function and Nonlinear Foundation Beam Modal Analysis^{*}

Zhao Xiang^{1†} Wang Qi¹ Zhu Weidong² Li Yinghui³

(1. School of Civil Engineering and Architecture, Southwest Petroleum University, Chengdu 610500, China)

(2. Department of Mechanical Engineering, University of Maryland, Baltimore County MD21250)

(3. School of Mechanics and Engineering, Southwest Jiaotong University, Chengdu 610000, China)

Abstract In the field of biology and medicine, for example, in the use of micro-electromechanical systems (MEMS) with microbeam structure in human implantation, the accuracy and stability of the equipment and instruments are greatly affected by the elastic foundation because the cellular environment in the body is similar to that of hydrogels. In order to analyze this problem, a beam dynamics model based on nonlinear beam is established in this paper, and the free vibration of a beam with a spring at any position and based on nonlinear spring is studied. By using of Laplace transform and linear superposition principle, a kind of constrained Green's function is obtained. Numerical calculation is carried out to verify the proposed solution, and the influence of various important physical parameters is studied. It is found that when the position of the spring moves towards the midspan, the modal symmetric is broken. The spring stiffness increases as the modal order changes.

Key words constrain Green's function, Laplace transform, nonlinear spring foundation, modal analysis, superposition principle

²⁰²³⁻⁰⁴⁻¹⁵ 收到第1稿,2023-04-28 收到修改稿.

^{*}国家自然科学基金资助项目(12072301),四川省自然科学基金(2022NSFSC0275), National Natural Science Foundation of China (12072301), National Natural Science Foundation of Sichuan Province (2022NSFSC0275).

[†]通信作者 E-mail: zhaoxiang_swpu@126.com

引言

近年来,随着微型芯片、人工智能、新型生物材料的发展,人机交互技术(man-machine interaction)进展迅速,该技术将微机电系统(MEMS)植入人体,从而实现人体与 MEMS 的互联.在 MEMS 植入人体的使用过程中,人体中的细胞可近似视作为水凝胶,这种环境中微梁结构的 MEMS 可近似看作为非线性弹簧基础上的基础梁,研究其动态特性,对MEMS 的精度和稳定性有着非同寻常的意义.

针对微梁的动力学特性,广大学者展开了大量 的研究, Wu 等^[1]建立了基于修正耦合应力理论和 Timoshenko梁理论的分析模型,研究了含裂纹微 梁的振动功率流,讨论了裂纹深度和裂纹位置对输 入功率流和传输功率流的影响,发现裂纹的存在显 著地改变了功率流的传输特性. Alibakhshi 等^[2]应 用 Euler-Benoulli 梁理论研究了纤维增强介电弹 性基微梁的非线性自由振动和强迫振动.采用打靶 法与弧长延拓法相结合的方法对系统的共振响应 进行了研究,发现纤维增强对介电弹性体的性能有 显著影响,此外,基于这种纤维结构的特性,得出了 该结果可以应用于动脉壁和软组织等生物结构的 研究的结论. Khabaz^[3]为了评估长度尺度参数和 动力响应对压电夹层智能复合微梁横向振动和稳 定性的影响,通过高阶应变梯度和表面效应理论, 研究了含压电层的新型夹层复合材料微梁的动力 学问题,发现了膨胀梯度相关的材料长度对振动频 率的影响最为显著. Li 和 Ke^[4]在考虑了 AFG 微 束的矩形和圆形截面形状条件下,分析了轴向功能 梯度微梁在流体中的尺寸相关振动和动力稳定性. 通过数值算例给出了固有频率、临界屈曲载荷和临 界激励频率对流体深度、尺寸参数、流体密度和截 面形状的响应. Abdelrahman 等^[5]首次提出了一种 能够分析多孔 Timoshenko 微梁在热环境和运动 质量作用下动态行为的有限元程序,并分析了穿孔 参数、热载荷剖面、移动质量特性以及移动速度对 穿孔微梁动态性能的影响. Sheng 和 Wang^[6]基于 von Kármán 非线性理论、修正耦合应力理论和 Euler-Bernoulli 梁理论,研究了功能梯度微梁的非 线性动力学.通过数值模拟,讨论了长度尺度参数、 体积分数指数和内部阻尼常数对非线性振动的影 响,发现通过改变长度尺度参数、体积分数指数和

内部阻尼常数,可以得到周期振荡和混沌振荡.毛 晓晔等^[7]通过建立中间弹性支撑的双跨梁模型,研 究了弹性支撑对受轴向压力的双跨梁屈曲稳定性 的影响,得到临界轴力随中间支撑刚度的变化规 律. Mao 等^[8]为了分析结构的强非线性问题,通过 引入广义坐标给出了强非线性和非齐次边界条件的 结构的解析解. Mao^[9]基于模态修正技术克服了非 线性边界条件下一般摄动法难以获得模态振型的难 题,分析了一般支承条件下柔性结构的非线性响应.

就梁动态特性的研究方法和手段而言,人们提 出了各种方法.例如,主流方法是基于无穷级数展 开的模态叠加法.然而,模态叠加法本质上是一种 近似的方法,在模态叠加的过程中,不可避免地会 用到截断法.然而,截断处理不仅影响计算的精度, 而且截断本身就是一个繁琐的过程,与之形成的鲜 明对比的是以 Green 函数为代表的解析手段并不 存在这个问题,并且具有迭代方便,收敛性好,计算 量小的优点,因此被广泛应用于各个研究领域. Abu-Hilal^[10]提出了一种通过动态 Green 函数确 定 Euler-Bernoulli 梁在承受分布和集中荷载时的 动态响应的方法,并给出了不同边界条件下的 Green 函数. Li 等^[11]在 Abu-Hilal 的基础上,获得 了带阻尼的 Timoshenko 梁强迫振动的动态 Green 函数解,通过比较了 Euler-Bernoulli、Rayleigh 和 Timoshenko 等梁模型,得到了剪切变形和转动惯 量等因素对梁动态特性的影响. Han 等人^[12]研究 了弯曲一扭转耦合的 Timoshenko 梁的动力学响 应,讨论了外部载荷频率和偏心率对弯曲一扭转的 Green 函数的影响,并将 Green 函数用于计算结构 的固有频率. Zhao 等^[13]用 Green 函数法研究了 Timoshenko 双梁系统在轴向压缩载荷下的强迫振 动,讨论了高长比、外部频率、剪切效应、转动惯量 以及轴向拉力等重要因素对 Green 函数的影响. Albassam^[14]用动态 Green 函数法研究了柔性梁的 振动,得到了反馈控制力可以消除期望点稳态振动 的结论. Chen^[15]研究了具有不同边界条件的轴向 运动 Timoshenko 梁的稳态动力学,讨论了结构在 过渡参数、高长比以及轴力作用下的动态响应. Ghannadiasl^[16]求解了多跨开裂 Euler-Bernoulli 梁 强迫振动的动态 Green 函数,评估了裂缝数量和位 置对梁的动态响应的影响.

总而言之,以前的 Green 函数方法主要是研究

各种动力学理论和工程实际问题,很少涉及生物和 医疗领域.本文在有弹簧和无弹簧的强迫振动基本 方程的基础上,通过变量分离法和 Laplace 变换求 解相应强迫振动方程的 Green 函数,然后通过叠加 原理得到任意弹簧和非线性弹簧基础的梁的约束 Green 函数.通过数值计算验证这一方案的有效 性,研究了弹簧对挠度和模态的影响,得到了弹簧 和基础不仅改变了梁的挠度,而且还影响了系统模 态的结论.此外,如果将该解决方案的进一步深化 研究,除了可以用于研究人体内 MEMS 的自供电 问题,还可用于探讨生物水凝胶中微纳尺度多源能 量采集系统的多场耦合复杂动力学问题.

1 任意弹簧约束下的约束 Green 函数

19世纪 30年代英国科学家 George Green 提 出了 Green 函数的概念,自此 Green 函数作为一种 物理学和数学手段被应用于力学、传热学、地震工 程学等诸多领域,并取得了大量的理论和工程研究 成果. Green 函数又被称为点源影响函数,是数学 物理中的一个重要概念.通过叠加原理求解任意点 源场的数学物理方程的方法被称为 Green 函数法, 与模态叠加法相比,具有迭代方便,计算精度高,运 算量小和运算速度快的优点.

Fig. 1 Simple harmonic loads applied to beam with arbitrary springs

图 1 为梁在任意弹簧作用下的强迫振动示意 图,其中, L 为梁长, $P_0 e^{i\alpha}$ 是外部激励, $x_1 和 x_0$ 分别代表外部激励施加位置和弹簧所在位置. 令图 1 弹簧刚度 k = 0,可得无弹簧梁强迫振动模型;令 图 1 的 $P_0 e^{i\alpha} = 0$,可得任意弹簧自由振动模型. 基 于线性叠加原理,用任意弹簧梁的强迫振动 Green 函数减去无弹簧梁的强迫振动 Green 函数可得任 意弹簧梁的约束 Green 函数.

1.1 弹簧梁的控制方程

由于本文研究的对象为高长比较小的梁,因此

选取 Euler-Bernoullil 梁模型,图 1 所示的带有任意弹簧的梁的强迫振动方程为

EIw^{'''} + ρA*w*['] + K*w*δ(*x* - *x*₀) = *p*(*x*,*t*) (1) 其中, *EI* 为抗弯刚度, *w* 为横向位移, ρA 为单位 长度质量, *K* 表示弹簧刚度, δ(*x* - *x*₀) 表示任意 弹簧位置, *p*(*x*,*t*) 为外激励. 此外, 在(1)中使用 了常规的微分符号, "·"表示对时间的导数, "/"表 示对空间坐标 *x* 的导数.

1.2 稳态动态问题的 Green 函数

假设受到简谐荷载 $p(x,t) = P(x)e^{i\alpha t}$ 作用,相 应的位移可以表示为 $w(x,t) = W(x)e^{i\alpha t}$,将其代 人公式(1),消除时间项后,可得如下稳态振动方程

 $EIW'''' - \rho A\Omega^2 W + KW\delta(x - x_0) = p(x, t)$ (2)

两端同时除以 EI

$$W'''' - \frac{\rho A \Omega^2}{EI} W + \frac{K}{EI} \delta(x - x_0) W = \frac{1}{EI} p(x, t)$$
(3)

简写为

$$W'''' + a_1 W + a_2 \delta(x - x_0) W = b_1 p(x, t)$$
(4)

从数学上来说,Green 函数 $G(x,x_0,x_1)$ 是以下方 程的解

$$W'''' + a_1 W + a_2 \delta(x - x_0) W = b_1 \delta(x - x_1)$$
(5)

为了得到相应的 Green 函数,对方程(5)进行 Laplace 变换为

$$s^{4}W - s^{3}W(0) - s^{2}W'(0) - sW''(0) - W''(0) - W'''(0) + a_{3}W + a_{5}e^{-sx_{0}}W = b_{5}e^{-sx_{1}}$$
(6)

经过计算,整理得

 $\hat{W}(s, x_0, x_1) =$

$$\frac{[b_1 e^{-sx_1} + s^3 W(0) + s^2 W'(0) + s W''(0) + W''(0)]}{(s^4 + a_1 + a_2 e^{-sx_0})}$$

(7)

为了便于后续的计算,将指数函数通过级数展 开,并保留二次项,即令 $e^{-sx_0} = 1 - x_0s + 1/2x_0^2s^2$. 然后,将其代入公式(7),那么我们可以推导出 $s^4 + a_1 + a_2e^{-sx_0} = s^4 + 1/2a_2x_0^2s^2 - a_2x_0s + a_1 + a_2$. 为了得到 $W(s, x_0, x_1)$ 的 Laplace 逆变换,我们假 设

$$s^{4} + 1/2a_{2}x_{0}^{2}s^{2} - a_{2}x_{0}s + a_{1} + a_{2}$$

 $=(s - s_1)(s - s_2)(s - s_3)(s - s_4)$ (8) 那么公式(7)经过 Laplace 逆变换的各项结果见附录,则 Green 函数可写为

$$G(x, x_{0}, x_{1}) = H(x - x_{1})\phi_{1}(x - x_{1}) + \phi_{2}(x)W(0) + \phi_{3}(x)W'(0) + \phi_{4}(x)W''(0) + \phi_{5}(x)W''(0)$$
(9)

其中, $\phi_i(x)(i=1,2,\dots,5)$ 被定义为

$$\phi_{1}(x) = \sum_{i=4}^{4} A_{i}(x)b_{1}, \ \phi_{2}(x) = \sum_{i=4}^{4} A_{i}(x)s_{i}^{3},$$

$$\phi_{3}(x) = \sum_{i=4}^{4} A_{i}(x)s_{i}^{2}, \ \phi_{4}(x) = \sum_{i=4}^{4} A_{i}(x)s_{i},$$

$$\phi_{5}(x) = \sum_{i=4}^{4} A_{i}(x).$$
(10)

1.3 常数的确定

为了确定常数W(0), W'(0), W'(0)和W''(0),需要确定 $\phi_i(x)(i=1,2,\dots,5)$ 的各阶导数,经过一定处理,这些导数可表示为

$$\begin{split} \phi_{1}^{k}(x) &= \sum_{i=4}^{4} s_{i}^{k} A_{i}(x) b_{1}, \ \phi_{2}^{k}(x) = \sum_{i=4}^{4} A_{i}(x) s_{i}^{3}, \\ \phi_{3}^{k}(x) &= \sum_{i=4}^{4} s_{i}^{k} A_{i}(x) s_{i}^{2}, \ \phi_{i}^{k}(x) = \sum_{i=4}^{4} s_{i}^{k} A_{i}(x) s_{i}, \\ \phi_{i}^{k}(x) &= \sum_{i=4}^{4} s_{i}^{k} A_{i}(x). \end{split}$$

$$(11)$$

将 Green 函数(9)求各阶导,可组成如下系数矩阵

$$\begin{bmatrix} \phi_{2}(L) & \phi_{3}(L) & \phi_{4}(L) & \phi_{5}(L) \\ \phi_{2}^{'}(L) & \phi_{3}^{'}(L) & \phi_{4}^{'}(L) & \phi_{5}^{'}(L) \\ \phi_{2}^{''}(L) & \phi_{3}^{''}(L) & \phi_{4}^{''}(L) & \phi_{5}^{''}(L) \\ \phi_{2}^{''}(L) & \phi_{3}^{''}(L) & \phi_{4}^{''}(L) & \phi_{5}^{''}(L) \\ \end{bmatrix} \begin{bmatrix} W(0) \\ W^{''}(0) \\ W^{''}(0) \\ W^{''}(0) \\ W^{''}(0) \end{bmatrix}$$

$$= \begin{bmatrix} W(L) - \phi_{1}(L - x_{1}) \\ W^{''}(L) - \phi_{1}^{''}(L - x_{1}) \\ W^{''}(L) - \phi_{1}^{''}(L - x_{1}) \\ W^{''}(L) - \phi_{1}^{''}(L - x_{1}) \end{bmatrix}$$
(12)

以简支边界条件为例,梁两端位移和弯矩为零,即W(0)=0和W^{*}(0)=0,则系数矩阵(12)可简化为

$$\begin{bmatrix} \phi_{3}(L) & \phi_{5}(L) \\ \phi_{3}^{'}(L) & \phi_{5}^{'}(L) \end{bmatrix} \begin{bmatrix} W'(0) \\ W''(0) \end{bmatrix} = \begin{bmatrix} \phi_{1}(L-x_{1}) \\ \phi_{1}^{'}(L-x_{1}) \end{bmatrix}$$
(13)

从公式(16),我们可以得到

$$W'(0) = \frac{\phi_{5}(L)\phi_{1}^{"}(L-x_{0}) - \phi_{1}(L-x_{0})\phi_{5}^{"}(L)}{\phi_{3}(L)\phi_{5}^{"}(L) - \phi_{3}^{"}(L)\phi_{5}(L)}$$
$$W''(0) = \frac{\phi_{1}(L-x_{0})\phi_{3}^{"}(L) - \phi_{1}^{"}(L-x_{0})\phi_{3}(L)}{\phi_{3}(L)\phi_{5}^{"}(L) - \phi_{3}^{"}(L)\phi_{5}(L)}$$
(14)

因此,梁在任意弹簧作用下的强迫振动 Green 函数为

$$G_{1}(x, x_{0}, x_{1}) = H(x - x_{1})\phi_{1-1}(x - x_{1}) + \phi_{3-1}(x)W_{1}^{'}(0) + \phi_{5-1}(x)W_{1}^{''}(0)$$
(15)

基于文献[11],无弹簧的梁的强迫振动 Green 函数为

$$G_{2}(x,x_{1}) = H(x-x_{1})\phi_{1-2}(x-x_{1}) + \phi_{3-2}(x)W_{2}(0) + \phi_{5-2}(x)W_{2}(0)$$
(16)

其中,x1依然是外激励位置,并且

$$\phi_{1-2}(x) = \sum_{i=4}^{4} A_i(x) b_1 s_i$$

$$\phi_{3-2}(x) = \sum_{i=4}^{4} A_i(x) s_i^2,$$

$$\phi_{5-2}(x) = \sum_{i=4}^{4} A_i(x)$$
(17)

根据线性叠加原理,任意弹簧的约束 Green 函数为

$$G_{3}(x, x_{0}) = G_{1}(x, x_{0}, x_{1}) - G_{2}(x, x_{1})$$

= $\phi_{3-1}(x)W'(0) + \phi_{5-1}(x)W''(0) - \phi_{3-2}(x)W''(0) - \phi_{5-2}(x)W''(0)$ (18)

2 带有非线性弹簧刚度基础的梁的 Green 函数

因为公式(18)是梁在任意弹簧作用下的约束 Green 函数,那么将弹簧刚度为常值 K 的在区间积 分可得等刚度弹簧基础作用下的约束 Green 函数 [0,L]为

此外,如果弹簧刚度 K 是一个非线性函数,如 图 2 所示.那么公式(19)是非线性刚度基础梁的约 束 Green 函数,通过设置 K 可以计算不同刚度的 基础梁的动力学特性.

3 数值结果和讨论

考虑一个高度 h 和长度 L 的简支 Euler-Ber-

noulli梁,它由一个弹簧支撑,如图1所示.为了便 于说明,我们引入以下无量纲参数:

$$\xi = \frac{x}{L}, \ \Omega_{1} = \frac{\Omega}{\Omega_{0}}, \ L' = \frac{x_{0}}{L},$$

$$g_{1}(\xi, \xi_{0}, \xi_{1}) = \frac{G_{1}(x, x_{0}, x_{1})}{w_{\max}^{s}},$$

$$g_{2}(\xi, \xi_{1}) = \frac{G_{2}(x, x_{1})}{w_{\max}^{s}},$$

$$g_{3}(\xi, \xi_{0}) = \frac{G_{3}(x, x_{0})}{z_{0}}.$$
(20)

其中, $\Omega_0 = \pi^2 \sqrt{EI/\rho A} / L^2$ 是 Euler-Bernoulli 梁的 一阶固有频率, $w_{max}^s = L^3 / (48EI)$ 是跨中 $x_1 = L/2$ 的静态挠度. L'是弹簧的位置. 在本节中,所有的 数值计算都是基于参数 $E = 1.8 \times 10^{11}$ Pa 和 $\Omega = 91.7161$ rad/s.

3.1 解的有效性验证

为了验证本解的有效性,将解析解与 Lueschen 等人^[17]和 Zhao 等人^[11]的解进行了比较.如 图 3 所示,本文的解与文献中的解一致,有力地验 证了本解的有效性.特别需要指出的是,数据计算 中涉及的参数,如杨氏模量、泊松比和梁的几何形 状都直接取自参考文献[11].

图 3 有无弹簧的强迫振动 Green 函数 Fig. 3 Green function of forced vibration with or without spring

3.2 任意弹簧的影响

图 4 展示了有无弹簧梁的强迫振动 Green 函 数和约束 Green 函数. 其中,有弹簧的强迫振动 Green 函数 $g_1(\xi, 1/3, 1/2)$ 被称为纠缠 Green 函 数,它由不带弹簧的强迫振动 Green 函数 $g_2(\xi, 1/2)$ 和约束 Green 函数 $g_3(\xi, 1/3)$ 组成. 值得注 意的是,约束的 Green 函数 $g_3(\xi, 1/3)$ 是模态,并 不代表真实的位移. 从图中可以看出,不含弹簧的 强迫振动的 Green 函数 $g_2(\xi, 1/2)$ 在梁的 L/2 处 受到集中点载荷的作用,图像关于 $\xi = L/2$ 对称. 然 而,有弹簧的强迫振动的 Green 函数 $g_1(\xi, 1/3, 1/2)$ 的对称性被弹簧所打破,这是符合物理事实 的. 此外,另一个重要的结论是一旦带和不带弹簧的 强迫振动 Green 函数 $g_1(\xi, 1/3, 1/2)$ 和 $g_2(\xi, 1/2)$ 被确定,那么约束 Green 函数 $g_3(\xi, 1/3)$ 也是唯一 确定的,这可以作为求解模态的另一种方法.

图 5 展示了弹簧在不同位置的约束 Green 函数.从图中可以看出,弹簧的位置在 L' = 1/5 对约束 Green 函数的模态影响较小,图像大致是关于跨中对称的.然而,当弹簧位置在 L' = 1/3 时, $g_3(\xi, L')$ 有一个明显的转变,整体向右端偏移,这表明具有一定刚度的弹簧起到了支撑作用,并导致约束 Green 函数 $g_3(\xi, L')$ 的模态发生一些变化,说明 跨中附近的弹簧对模态的影响大于支座附近的弹簧.由此,从图像的对称性随着弹簧位置的变化而变化的现象可以看出,弹簧位置位移对模态的变化起着重要的作用.

图 4 强迫振动的 Green 函数和约束 Green 函数 Fig. 4 Green function of forced vibration and constraint Green function

图 6 展示了不同弹簧刚度下的约束 Green 函

数.可以看出,当弹簧刚度为 EI, $g_3(\xi,2/3)$ 一阶模 态出现左端上凸的形状. 在 K = 2EI,约束 Green 函 数 $g_3(\xi,2/3)$ 表现为左端上凸,右端下凹的二阶模 态. 当 K = 3EI,约束 Green 函数 $g_3(\xi,2/3)$ 变为右 端下凹一阶模态,并且模态不再随着弹簧刚度 K 增 加而变化. 这进一步表明,弹簧刚度不仅改变了模态 的形状,而且也改变了模态的顺序.

图 6 不同弹簧刚度的约束 Green 函数 Fig. 6 Constraint Green functions of different spring stiffness

3.3 线性等刚度弹簧基础的影响

图 7 展示了梁在等刚度弹簧基础上的强迫和约 束 Green 函数以及无弹簧的强迫 Green 函数. 从图 中可以看出, 无弹簧的强迫振动 Green 函数 $g_2(\xi,$ 1/2) 比等刚度弹簧基础的强迫振动 Green 函数 $W_1(\xi,1/2)$ 大,这是由于 $W_1(\xi,1/2)$ 受到等刚度 弹簧的影响,振幅有所削减.此外,另一个值得注意 的现象是当等刚度弹簧基础和无弹簧的强迫振动 Green 函数 $W_1(\xi,1/2)$ 和 $g_2(\xi,1/2)$ 对称时,线性 等刚度基础作用下的约束 Green 函数 $W_3(\xi)$ 有相 同的结果,这也证明了约束 Green 的函数的纠缠 性.

3.4 非线性弹簧基础的影响

图 8 展示了梁在多项式函数非线性基础上的 约束 Green 函数.在图中,约束 Green 函数的二阶 模态随着弹簧刚度的变化而发生改变.在K = ax+ b,基础是线性刚度基础,约束 Green 函数 $W_3(\xi)$ 作为标准二阶模态出现.当 $K = ax^2 + bx + c$,基础是非线性的,并且约束 Green 函数 $W_3(\xi)$ 的波峰和波谷向右端移动,在 $K = ax^3 + bx^2 + cx$ + d 时这种现象变得更加明显,充分展示了非线性 基础对模态的影响.此后,随着多项式函数阶数的 增加,约束 Green 函数没有显著变化.

图 8 多项式函数非线性基础的约束 Green 函数 Fig. 8 Constraint Green function on the nonlinear foundation of polynomial function

图 9 三角函数非线性刚度基础的约束 Green 函数 Fig. 9 Constraint Green function on the nonlinear function of trigonometric functions

图 9 显示了梁在三角函数非线性刚度基础上 的约束 Green 函数. 从图中可以看出,正弦刚度基 础 $K = \pi/2L \sin \pi x/L$ 的约束 Green 函数 $W_3(\xi)$ 即 将完成从三阶向二阶模态的过渡,然而,余弦刚度 基础 $K = \pi/2L \sin \pi x/L$ 约束 Green 函数已经呈现 出二阶模态,这表明正弦刚度基础的约束 Green 函 数 $W_3(\xi)$ 明显滞后于余弦函数,而造成这种现象 的主要原因是三角函数的相位差.通过上述分析, 也从另一个角度说明正余弦刚度函数虽然具有相 同的周期和振幅,但是对于模态的影响呈现出不同 的特点.

图 10 高长比对正弦函数非线性地基约束 Green 函数的影响 Fig. 10 Influence of height-length ratio on sine function nonlinear foundation constraint Green function

图 10 展示了高长比对正弦函数非线性刚度基 础约束 Green 函数的影响. 从图中可以看出, 模态 的变化是由非线性基础上梁的高长比变化所引起 的. 当高长比 $\beta = 1/3$, 约束 Green 函数 $W_3(\xi)$ 表现 为一阶模态. 在 $\beta = 1/5$, $W_3(\xi)$ 是一个三阶模态. 在 $\beta = 1/8$, $W_3(\xi)$ 从三阶模态转变为二阶模态. 整 个过程展示了高长比的变化引起约束 Green 函数 的相应变化, 也表明了在正弦非线性地基上梁的高 长比对模态的影响.

4 结论

本文通过 Laplace 变换和叠加原理系统地研究了带有任意弹簧和非线性弹簧基础梁的约束 Green 函数.通过数值计算验证该解决方案的有效 性,研究了一些重要的物理参数并得出以下结论:

(1)弹簧对梁的振幅减小有明显影响,有弹簧 的梁的挠度明显小于无弹簧的挠度.

(2)弹簧的刚度和位置对约束 Green 函数的影 响较大,能够引起模态阶数的转变和波谷的移动.

(3)多项式函数非线性基础对约束 Green 函数 有显著影响,会引起波峰和波谷的向右端支座移动.

(4)正弦和余弦函数非线性基础的约束 Green 函数存在相位差,高长度比的变化会导致模态转化.

此外,目前的约束 Green 函数可以应用于研究 更广泛的问题.例如,这些结果可以为 DNA 复合 材料和微梁传感器的设计提供一些有价值的参 考^[18].此外,在生物力学^[19]和仿生动力学^[20,21]中的应用也是可以期待的.

参考文献

- [1] WU X W, ZHU L F, WU Z M, et al. Vibrational power flow analysis of Timoshenko microbeams with a crack [J]. Composite Structures, 2022, 289: 115483.
- [2] ALIBAKHSHI A, DASTJERDI S, FANTUZZI N, et al. Nonlinear free and forced vibrations of a fiberreinforced dielectric elastomer-based microbeam
 [J]. International Journal of Non Linear Mechanics, 2022, 144: 104092.
- [3] KHABAZ M K, ALI EFTEKHARI S, TOGH-RAIE D. Vibration and dynamic analysis of a cantilever sandwich microbeam integrated with piezoelectric layers based on strain gradient theory and surface effects [J]. Applied Mathematics and Computation, 2022, 419; 126867.
- [4] LI H C, KE L L. Size-dependent vibration and dynamic stability of AFG microbeams immersed in fluid [J]. Thin-Walled Structures, 2021, 161: 107432.
- [5] ABDELRAHMAN A A, ESEN I, ELTAHER M A. Vibration response of Timoshenko perforated microbeams under accelerating load and thermal environment [J]. Applied Mathematics and Computation, 2021, 407: 126307.
- [6] SHENG G G, WANG X. Nonlinear forced vibration of size-dependent functionally graded microbeams with damping effects [J]. Applied Mathematical Modelling, 2019, 71: 421-437.
- [7] 毛晓晔,邵志华,舒送,等.中间支撑刚度对双跨梁屈曲稳定性的影响[J].振动与冲击,2022,41
 (11):1-9+17.
 MAO X Y, SHAO Z H, SHU S, et al. Effect of intermediate support stiffness on buckling stability of a double-span beam [J]. Journal of Vibration and Shock, 2022, 41(11):1-9+17. (in Chinese)
- [8] MAO X Y, SUN J Q, DING H, et al. An approximate method for one-dimensional structures with strong nonlinear and nonhomogenous boundary conditions [J]. Journal of Sound and Vibration, 2020, 469: 115128.
- [9] MAO X Y, DING H, CHEN L Q. Vibration of

flexible structures under nonlinear boundary conditions [J]. Journal of Applied Mechanics, 2017, 84 (11): 111006.

- [10] ABU-HILAL M. Forced vibration of Euler-Bernoulli beams by means of dynamic Green functions [J].
 Journal of Sound and Vibration, 2003, 267(2): 191 -207.
- [11] LI X Y, ZHAO X, LI Y H. Green's functions of the forced vibration of Timoshenko beams with damping effect [J]. Journal of Sound and Vibration, 2014, 333(6): 1781-1795.
- [12] HAN H S, CAO D Q, LIU L. Green's functions for forced vibration analysis of bending-torsion coupled Timoshenko beam [J]. Applied Mathematical Modelling, 2017, 45: 621-635.
- [13] ZHAO X, CHEN B, LI Y H, et al. Forced vibration analysis of Timoshenko double-beam system under compressive axial load by means of Green's functions [J]. Journal of Sound Vibration, 2020, 464: 115001.
- [14] ALBASSAM B A. Vibration control of a flexible beam structure utilizing dynamic Green's function
 [J]. Journal of King Saud University-Engineering Sciences, 2021, 33(3): 186-200.
- [15] CHEN T, SU G, SHEN Y S, et al. Unified Green' s functions of forced vibration of axially loaded Timoshenko beam: transition parameter [J]. International Journal of Mechanical Sciences, 2016, 113: 211-220.
- [16] GHANNADIASL A, KHODAPANAH AJIRLOU S. Forced vibration of multi-span cracked Euler-Bernoulli beams using dynamic Green function formulation [J]. Applied Acoustics, 2019, 148: 484-494.
- [17] LUESCHEN G G G, BERGMAN L A, MCFAR-LAND D M. Green's functions for uniform Timoshenko beams [J]. Journal of Sound and Vibration, 1996, 194(1): 93-102.
- [18] ZHANG N H, WU C X, YANG Y, et al. Adjustable frequency shift of laminated DNA microbeam under complex detection conditions by different packaging patterns [J]. Composite Structures, 2022, 292: 115652.
- [19] GODA I, ASSIDI M, BELOUETTAR S, et al. A micropolar anisotropic constitutive model of cancel-

lous bone from discrete homogenization [J]. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 16: 87-108.

[20] 张佳俊,张舒,徐鉴.下肢康复外骨骼人机耦合动 力学建模与控制[J].动力学与控制学报,2021,19 (4):55-63.
ZHANG J J, ZHANG S, XU J. Human-machine coupled dynamic modelling and control of lower limb

exoskeleton for rehabilitation [J]. Journal of Dynamics and Control, 2021, 19(4): 55-63. (in Chinese)

[21] 赵勇,吴俊梅,杨梅晨,等. 耦合胰腺β细胞的同步 性分析[J].动力学与控制学报,2020,18(1):17-23.
ZHAO Y, WU J M, YANG M C, et al. Synchronous analysis of electrically coupled pancreatic β cells [J]. Journal of Dynamics and Control, 2020, 18(1): 17-23. (in Chinese)

附录:

Table 1 The inverse L	aplace transform
系数	表达式
	$H(x - x_1)[A_1(x -$
$L^{-1} = \left[\frac{b_1 e^{-sx_1}}{(s-s_1)(s-s_2)(s-s_3$	$ \begin{array}{c} x_1 b_1 s_1 + A_2 (x - x_1) b_1 s_2 + A_3 (x - x_1) b_1 s_3 + A_3 (x -$
	$x_1)b_1s_3 + A_4(x - x_1)b_1s_4$
$L^{-1} = \left[\frac{s^3}{(s-s_1)(s-s_2)(s-s_3)(s-$	$ \begin{array}{c} & \\ \hline s_{4} \end{array} \right] \begin{array}{c} A_{1}(x)s_{1}^{3} + A_{2}s_{2}^{3} + \\ A_{3}(x)s_{3}^{3} + A_{4}(s)s_{4}^{3} \end{array} $
$L^{-1} = \left[\frac{s^2}{(s-s_1)(s-s_2)(s-s_3)(s-$	$\frac{1}{\left[\frac{A_{1}(x)s_{1}^{2}+A_{2}s_{2}^{2}+A_{3}(x)s_{3}^{2}+A_{4}(s)s_{4}^{2}\right]}$
$L^{-1} = \left[\frac{s}{(s-s_1)(s-s_2)(s-s_3)(s-s_$	$ \begin{array}{c} & \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \\ \hline \\$
$L^{-1} = \left[\frac{1}{(s-s_1)(s-s_2)(s-s_3)(s-s_$	$ \begin{array}{c} & \\ \hline \\$

表 1 拉普拉斯逆变换的各项结果

其中,H(g)是 Heaviside 函数,A _i (i=1,	2,3,4)定义为
--	-----------

系数	表达式
$A_1(x)$	$\left[\frac{e^{s_1x}}{(s_1-s_2)(s_1-s_3)(s_1-s_4)}\right]$
$A_2(x)$	$\left[\frac{\mathrm{e}^{s_2x}}{(s_2-s_1)(s_2-s_3)(s_2-s_4)}\right]$
$A_3(x)$	$\left[\frac{e^{s_3x}}{(s_3-s_1)(s_3-s_2)(s_3-s_4)}\right]$
$A_4(x)$	$\left[\frac{e^{s_4x}}{(s_4-s_1)(s_4-s_2)(s_4-s_3)}\right]$