文章编号:1672-6553-2024-22(1)-060-009

DOI:10.6052/1672-6553-2023-010

Winkler 地基梁动力学系统的无量纲化与参数识别*

郑罡1,24 曹和生2 杜宗松2 蔡汶秀2 陈鹏2

(1. 重庆交通大学省部共建山区桥梁及隧道工程国家重点实验室,重庆 400074)

(2. 重庆交通大学 土木工程学院,重庆 400074)

摘要为简化 Winkler 地基梁动力学系统的双参数识别计算,提出一种新无量纲方法,通过对系统时间、空间坐标进行线性变换,实现动力学方程系数的彻底归一化,得到与系统参数解耦的广义频率方程,发现频率、频率比仅由无量纲梁长决定的本质.提出基于频率比互等关系的双参数识别算法,该算法通过对广义频率方程进行一次求解即可在相应边界条件下得到频率、频率比关于无量纲梁长的预解集,在得到该系统任意两阶实测频率后,即可依托于时间、空间还原系数所建立的线性转换关系实现对双系统参数的定解.较之于传统双参数识别算法,该算法具有两个特点:(1)识别计算仅涉及单变量超越方程的求解与线性转换,避免了双参数超越方程组的非线性迭代问题,可使识别计算得到有效简化.(2)任意系统参数值的变化仅影响时空、空间还原系数的大小,预解集具有适用于系统参数值任意变化的一般性,可有效避免因系统参数值改变而导致重复迭代的情况,实现了解的一般化.

关键词 Winkler 地基梁, 动力学系统, 无量纲化, 归一化, 参数识别
 中图分类号:O321
 文献标志码:A

Dimensionless and Parameter Identification of Dynamic System of Beam on Winkler Foundation *

Zheng Gang^{1,2†} Cao Hesheng² Du Zongsong² Cai Wenxiu² Chen Peng²

State Key Laboratory of Mountain Bridge and Tunnel Engineering, Chongqing Jiaotong University, Chongqing 400074, China)
 (2. College of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China)

Abstract In order to simplify the dual parameter identification calculation of the dynamic system of the beam on Winkler Foundation, a new dimensionless method is proposed. The time and space coordinates of the system are linearly transformed to realize the complete normalization of the coefficients of the dynamic equation. The generalized frequency equation decoupled from the system parameters is obtained. It is found that the frequency and frequency ratio are only determined by the dimensionless span. Based on this discovery, a dual parameter identification algorithm based on the reciprocal relationship of frequency ratios is proposed. This algorithm can obtain the resolvent set of frequency and frequency ratio with respect to the dimensionless span under the corresponding boundary conditions by solving the generalized frequency equation once. After obtaining any two order measured frequencies of the system, the dual system parameters can be determined by relying on the linear transformation relationship established by the time and space reduction coefficients. Compared with the traditional two parameter identification algorithm, this algorithm has two characteristics:(1) The identification calculation only involves the solu-

²⁰²³⁻⁰¹⁻⁰² 收到第1稿,2023-02-10 收到修改稿.

^{*} 国家自然科学基金项目(51978112,51478072), National Natural Science Foundation of China(51978112,51478072).

[†]通信作者 E-mail:775939517@qq.com

tion and linear transformation of the univariate transcendental equation, which avoids the nonlinear iteration problem of the two parameter transcendental equation set in the traditional method, and can effectively simplify the identification calculation.(2) The change of any system parameter value only affects the size of the time and space reduction coefficients. Therefore, the resolvent set has generality applicable to any change of system parameter value, which can effectively avoid the repeated iterative solution caused by the change of system parameter value in traditional methods, and realize the generalization of the solution.

Key words beam on winkler foundation, dynamic system, dimensionless, normalization, parameter identification

引言

Winkler 地基梁模型在岩土、公路、铁路以及 航空航天等领域都有着广泛的应用^[1-4],该模型的 受力特点决定其易发生梁体损伤、地基脱空等破 坏,从而对结构安全造成严重影响,因此,国内外学 者对该模型的损伤诊断问题进行了大量研究,取得 了一系列富有成效的进展.文献[5]采用有限元法 计算该模型在不同损伤工况下的振型与固有频率, 提出基于遗传算法的两级参数识别流程,对梁体损 伤位置、程度以及地基脱空位置进行识别;文献[6] 通过建立考虑梁内损伤与地基脱空的有限元模型, 计算相应工况下的转角模态,并对其进行连续小波 变换,识别了梁体损伤与地基脱空位置;文献[7]利 用分段函数推导了考虑地基脱空位置与长度进行识 别.

值得注意的是,以上研究均需将各系统参数初 始值作为已知量代入计算,若无法对其进行准确识 别,则将在一定程度上造成损伤诊断结果与结构实 际状态的不符^[8,9],因此,其系统参数初始值的识别 问题愈发受到研究者的关注,文献[10]通过锤击法 实测 Winkler 地基梁的固有频率,采用传递矩阵法 导出以地基刚度为未知数的高次方程,对地基刚度 进行识别;文献[9]基于频率响应函数提出针对地 基刚度与质量分布的双参数识别算法.值得注意的 是,由于 Winkler 地基梁动力学系统当前未能实现 与系统参数的解耦,导致其动力学方程与频率方程 仍含多个系统参数,任意系统参数值的变化均将导 致求解的重复,使该系统正、反两类求解问题都不 具适用于系统参数值任意变化的一般性;更重要的 是,该系统的双参数识别反问题也将成为双参数超 越方程组的非线性迭代,造成了求解的不便与困 难,在一定程度上限制了双参数识别算法的发展与 应用.

可以看出,Winkler 地基梁动力学系统的参数 识别仍然存在有待解决的问题,因此,本文提出基 于频率比互等关系的双参数识别算法,旨在同时对 该系统两项系统参数进行识别,并实现对其计算的 简化.本文首先提出一种新无量纲方法,完成 Winkler 地基梁动力学系统的无量纲化,实现动力学方 程系数的彻底归一化,建立与系统参数解耦的广义 频率方程,然后导出频率一梁长预解集与频率比一 梁长预解集,利用时间、空间还原系数所建立的线 性转换关系提出双参数识别算法,同时对该系统的 两项系统参数进行识别.

1 Winkler 地基梁动力学系统的无量纲化

据调研,根据无量纲方法的不同,Winkler 地 基梁动力学系统已演化出三种不同形式:(1)时间、 空间坐标均未无量纲化的有量纲动力学系统^[11]; (2)仅对空间坐标进行无量纲化的部分无量纲动力 学系统^[12];(3)同时对时间、空间坐标进行无量纲 化的完全无量纲动力学系统^[13].

不同动力学系统所对应的动力学方程与频率 方程(以两端固定边界为例)可分列如下:

(1)有量纲动力学系统
 动力学方程:

$$\widetilde{E}\widetilde{I} \frac{\partial^4 v(x,t)}{\partial \widetilde{x}^4} + \widetilde{m} \frac{\partial^2 v(x,t)}{\partial \widetilde{t}^2} + \widetilde{k}\widetilde{v}(\widetilde{x},\widetilde{t}) = 0$$
(1)

频率方程: $1 - \cos(\tilde{\delta}_1 \tilde{\ell}) \cosh(\tilde{\delta}_1 \tilde{\ell}) = 0$ (2) (2)部分无量纲动力学系统 动力学方程:

$$\frac{\partial^{4}\widetilde{\nu}(x,\widetilde{t})}{\partial x^{4}} + \widetilde{\xi}_{2}^{2} \frac{\partial^{2}\widetilde{\nu}(x,\widetilde{t})}{\partial \widetilde{t}^{2}} + K_{2}^{4}\widetilde{v}(x,\widetilde{t}) = 0$$
(3)

频率方程:
1 -
$$\cos(\delta_2)\cosh(\delta_2) = 0$$
 (4)

动力学方程:

$$\frac{1}{K_3^4} \frac{\partial^4 \nu(x,t)}{\partial x^4} + \frac{\partial^2 \nu(x,t)}{\partial t^2} + v(x,t) = 0 \quad (5)$$

频率方程:

$$1 - \cos(\delta_3)\cosh(\delta_3) = 0 \tag{6}$$

对于以上各式及下文中所涉及的系统参数与 变量,带"~"符号即为有量纲量,反之则为无量纲 量,若未对量纲进行说明,均代指无量纲量.其中: \tilde{t} 、 \tilde{x} 为时间、空间坐标自变量; $\tilde{E}I$ 为弯曲刚度; \tilde{m} 为线密度; \tilde{k} 为地基刚度; \tilde{l} 为梁长; ω 为圆频率; $\tilde{v}(\tilde{x},\tilde{t})$ 为动挠度曲线; $\xi_{n}^{2}(\tilde{\xi})$ 、 $K_{n}^{4}(\tilde{k}_{n}^{3})$ 、 $\delta_{n}(\tilde{\delta}_{n})$ 系 为简化表达而引入的组合参数,可由下表 1 所列算 式得到,其中 n=1,2,3.

表 1 组合参数计算表

Table 1 Ca	alculation of combined parameters					
${m \xi}_n^2(\widetilde{m \xi}_n^2)$	$K_n^4(\widetilde{k}_n^4)$	$\delta_n(\widetilde{\delta}_n)$				
$\widetilde{m{\xi}}_1^2 = \widetilde{m}/\widetilde{E}\widetilde{I}$	$\widetilde{K}_1^4 = \widetilde{k} / \widetilde{E} \widetilde{I}$	$\widetilde{\delta}_1 = \sqrt[4]{\widetilde{\xi}_1^2 \widetilde{\omega}^2 - \widetilde{K}_1^4}$				
$\widetilde{m{\xi}}_2^{2} = \widetilde{m}\widetilde{l}^{4}/\widetilde{E}\widetilde{l}$	$K_2^4=\widetilde{k}\widetilde{l}^4/\widetilde{E}\widetilde{l}$	$\delta_2 = \sqrt[4]{\widetilde{m{\xi}}_2^2\widetilde{m{\omega}}^2 - K_2^4}$				
$\xi_3^2=1$	$K_{3}^{4} = K_{2}^{4}$	$\delta_3 = K_3 \cdot \sqrt[4]{\omega^2 - 1}$				

由式(1)、式(3)、式(5)、表1可知,随着Winkler 地基梁动力学系统的演化,已逐渐实现其动力 学方程两项系数的归一化,后续的理论推导将因此 而得到一定简化,但由于其动力学方程并未实现彻 底的归一化,仍含一项由弯曲刚度*EI*、地基刚度*&* 、梁长*ī*三个有量纲系统参数组合而成的系数,任 意系统参数值的变化均会导致求解的重复,使该系 统正、反两类求解问题都不具有适用于系统参数值 任意变化的一般性,更重要的是,该系统的双参数 识别计算反问题也将成为双参数超越方程组的非 线性迭代,造成求解的不便与困难.

因此,下文提出一种新无量纲方法,以实现 Winkler 地基梁动力学方程系数的彻底归一化.

1.1 动力学方程的归一化

首先,引入时间、空间还原系数 α_t 、 α_x ,同时

对该系统的时间、空间坐标作如下线性变换:

$$\widetilde{t} = \alpha_t t \tag{7}$$

$$\tilde{x} = \alpha_x x \tag{8}$$

将线性变换式(7)、式(8)代入有量纲动力学方 程式(1)有:

$$\widetilde{E}\widetilde{I} \frac{\partial^{4}\nu(x,t)}{\partial x^{4}} + \frac{\widetilde{m}\alpha_{x}}{\alpha_{t}^{2}} \frac{\partial^{2}\nu(x,t)}{\partial t^{2}} + \widetilde{k}\alpha_{x}v(x,t) = 0$$
(9)

式(9)两边同乘 $1/\tilde{k}\alpha_x$,即可得到:

v(x,t) = 0

$$\frac{\widetilde{\Sigma}\widetilde{I}}{\alpha_x^3} \frac{\partial^4 \nu(x,t)}{\partial x^4} + \frac{\widetilde{m}}{\widetilde{k}\alpha_t^2} \frac{\partial^2 \nu(x,t)}{\partial t^2} +$$
(10)

$$\widehat{\stackrel{EI}{\check{k}}}_{\alpha}^{4} = EI = 1$$
(11)

$$\frac{\tilde{m}}{\tilde{k}\,\alpha_i^2} = m = 1 \tag{12}$$

解得:

$$\alpha_{t} = \sqrt{\frac{\widetilde{m}}{\widetilde{k}}}$$
(13)

$$a_x = \sqrt[4]{\frac{\widetilde{E}\widetilde{I}}{\widetilde{k}}}$$
(14)

当时间、空间还原系数按上式(13)、式(14)取 值时,有量纲动力学方程式(1)即可转化为如下归 一化形式:

$$\frac{\partial^4 \nu(x,t)}{\partial x^4} + \frac{\partial^2 \nu(x,t)}{\partial t^2} + v(x,t) = 0 \qquad (15)$$

由式(15)可知,该式已同时实现时间、空间坐标 的无量纲化与系数的彻底归一化,原有量纲动力学 方程式(1)中分别代表弯曲刚度 EI、线密度 m、地 基刚度 \tilde{k} 的 3 个常系数全部被化为无量纲的单位形 式,即 EI = m = k = 1.如此,任意系统参数值的变 化均仅影响时间、空间还原系数 α_t 、 α_x 的大小.若 能在有、无量纲两种体系间建立联系,则式(15)即 成为适用于系统参数值任意变化的归一化动力学 方程,可实现 Winkler 地基梁动力学系统解的一般 化.根据式(13)、式(14)可建立如下转换关系:

$$\tilde{l} = \alpha_x l \tag{16}$$

$$\tilde{\boldsymbol{\omega}} = (1/\alpha_t)\boldsymbol{\omega} \tag{17}$$

$$\widetilde{E}\widetilde{I} = (\widetilde{m}\alpha_x^4/\alpha_t^2)EI$$
(18)

$$\widetilde{k} = (\widetilde{m}/\alpha_t^2) k \tag{19}$$

 $\widetilde{m} = \widetilde{m}m$ $\eta_{ii} = \widetilde{\omega}_i / \widetilde{\omega}_i = \omega_i / \omega_i = \widetilde{\eta}_{ii}$ (20) (21)

式(16)~式(20)左边为有量纲体系下的系统 参数,右边为相应的转换系数与其无量纲形式的乘 积,通过上式所建立的线性转换关系,即可实现各 系统参数在有、无量纲两种体系间的转换.值得注 意的是,由频率转换关系式(17)可知,在有、无量纲 两种体系中,任意两阶频率的比值 η_{ij} (下文称:频 率比)均具有式(21)所示的互等关系,为便于区分, 在此式及下文中,当 $\tilde{\omega}_i(\omega_i)$ 与 $\tilde{\omega}_j(\omega_j)$ 同时出现 时,前者代指频率比分子有(无)量纲频率,后者代 指频率比分母有(无)量纲频率.

下文对归一化动力学方程式(15)展开求解,导 出相应边界条件下的广义频率方程,以得到 Winkler 地基梁动力学系统的一般解.

1.2 频率方程的广义化

由分离变量法,可设归一化动力学方程式(15) 的通解为:

 $v(x,t) = \phi(x) \exp(i\omega t)$ (22)

将式(22)代入式(15),可得本征函数 $\phi(x)$ 的 通解:

 $\phi(x) = A_1 \cosh(\delta x) + A_2 \sinh(\delta x) +$

 $A_{3}\cos(\delta x) + A_{4}\sin(\delta x)$ (23) 其中, $A_{1} \sim A_{4}$ 为依赖边界条件与初始条件的复常 数; δ 系为简化表达而引入的组合参数,可由式 (24)计算.

 $\delta = \sqrt[4]{\omega^2 - 1} \tag{24}$

此处考虑两端固定、两端简支、固定一自由等 3 种经典边界,相应的边界条件表达式可分列如下:

(1)两端固定

$$\frac{v(x,t)}{\partial x}\Big|_{x=0,l} = 0$$

$$\frac{\partial v(x,t)}{\partial x}\Big|_{x=0,l} = 0$$

$$(25)$$

$$\frac{v(x,t)}{\partial x^2}\Big|_{x=0,l} = 0$$

$$\frac{\partial^2 v(x,t)}{\partial x^2}\Big|_{x=0,l} = 0$$
(26)

(3)固定一自由

$$\left. \begin{array}{c} v(x,t) \left|_{x=0} = 0; \frac{\partial v(x,t)}{\partial x} \right|_{x=0} = 0 \\ \frac{\partial^2 v(x,t)}{\partial x^2} \left|_{x=1} = 0; \frac{\partial^3 v(x,t)}{\partial x^3} \right|_{x=1} = 0 \end{array} \right.$$
(27)

将式(22)分别代入边界条件式(25)~式(27), 即可得到相应边界条件下的广义频率方程:

(1)两端固定

$$1 - \cos(\delta l) \cosh(\delta l) = 0$$
 (28)
(2)两端简支
 $\sinh(\delta l) \sin(\delta l) = 0$ (29)
(3)固定一自由

$$1 + \cos(\delta l)\cosh(\delta l) = 0 \tag{30}$$

由式(28)~式(30)可知,以上各边界条件下的 广义频率方程均实现了与系统参数的解耦,仅由组 合参数 δ 与无量纲梁长 l 两个变量决定.结合式 (24)通过单变量迭代即可一次性求解得到各阶频 率 ω_i 关于无量纲梁长 l 的预解集,即 ω_i -l 曲线;根 据式(21),可进一步得到相应阶次频率比 η_{ij} 关于 无量纲梁长 l 的预解集,即 η_{ij} -l 曲线.图 1、图 2 以 两端固定边界为例,分别给出了前 6 阶频率所对应 的 ω_i -l 曲线与 η_{i1} -l 曲线.

Fig.2 Frequency ratio-Span curve(η_{ij} -l curve)

值得注意的是,由于广义频率方程实现了与系 统参数的解耦,故频率一梁长曲线、频率比一梁长 曲线均具有适用于系统参数值任意变化的一般性, 依托于时间、空间还原系数所建立的线性转换关系 即可实现对该系统正、反两类问题的定解,不仅可 有效避免传统求解方法因系统参数值的改变而导 致重复迭代的情况,而且可使传统双参数识别算法 中的双参数超越方程组的非线性迭代转换为单参 数迭代,使计算得到有效的简化.

基于以上发现,下文提出基于频率比互等关系的双参数识别算法,展开对 Winkler 地基梁动力学系统的双参数识别.

2 基于频率比互等关系的双参数识别算法

2.1 算法流程

根据广义频率方程、线性转换关系式(16)~式 (20)、频率比互等关系式(21),可建立图 3 所示的 双参数识别算法,该算法已知弯曲刚度 EI、线密 度 \tilde{m} 、地基刚度 \tilde{k} 三个系统参数中的任意一个,即 可利用任意两阶实测频率对其余两个系统参数进 行识别.此处以线密度 \tilde{m} 已知为例,阐释识别弯曲 刚度 EI、地基刚度 \tilde{m} 的算法流程.

图 3 双参数识别算法流程图 Fig.3 Flow chart of dual parameter identification algorithm

图 3 所示算法在准备工作后,可分 5 步计算.

准备工作:求解广义频率方程,绘制频率一梁 长曲线(ω_i-l 曲线);由频率比互等关系式(21)绘 制频率比一梁长曲线(η_{ii}-l 曲线).

Step1:根据任意两阶实测频率 $\tilde{\omega}_i$ 、 $\tilde{\omega}_j$ 求得频

率比 η_{ij} .

Step2:由频率比 η_{ij},根据频率比一梁长曲线 (η_{ij}-*l*曲线)确定无量纲梁长 *l*.

Step3:由无量纲梁长 *l*,根据频率 - 梁长曲线 (ω-*l*曲线)确定各阶次无量纲频率 ω_i、ω_i.

Step4:根据频率转换关系式(17)计算时间还 原系数 α_t;由梁长转换关系式(16)计算空间还原 系数 α_x.

Step5:根据式(18)计算弯曲刚度 \tilde{EI} ;根据式(19)计算地基刚度 \tilde{k} .

2.2 算法本质

根据 2.1 节算法流程可知,本文所提出的双参数识别算法,将原本双参数超越方程组的非线性迭代计算问题转化为单变量超越方程(广义频率方程)的求解与式(16)~式(20)所示的线性转换,实现了对双参数识别计算问题的简化,本节旨在探究识别计算得到简化的原因.

首先,回到问题的起点,由式(1)~式(6)、表 1 可知,有量纲动力学系统、部分无量纲动力学系统、 完全无量纲动力学系统所对应的动力学方程、频率 方程均含与系统参数有关的组合参数,因此,上述 3 种动力学系统的求解全过程均直接与系统参数 的大小有关,这也是传统算法陷入双参数超越方程 组非线性迭代的原因.因此,本文采用新无量纲方 法,完成了动力学系统时间、空间坐标的无量纲化, 实现了动力学方程系数的彻底归一化,这意味着, 式(1)中分别代表弯曲刚度 EI、线密度 \tilde{m} 、地基 刚度 \tilde{k} 的 3 个常系数全部被化为无量纲的单位形 式,即 EI = m = k = 1,因此,本文后续的推导均不 显含系统参数,频率方程仅由无量纲频率 ω 与无 量纲梁长决定.

值得注意的是,广义频率方程的本质并未改 变,结合式(13)、式(14)、式(16)、式(17)可以推出, 无量纲梁长 $l = \sqrt[4]{k\tilde{l}^4/K\tilde{l}}$.此外,还可推出,不同系 统参数值($\tilde{k},\tilde{l},\tilde{K}\tilde{l},\tilde{m}$)对应着不同的时间、空间 还原系数 α_i,α_x ,进而对应着不同的无量纲频率 ω 与无量纲梁长 l.可以看出,本文的无量纲处理实际 上赋予了组合参数 $\sqrt[4]{k\tilde{l}^4/K\tilde{l}}$ 无量纲梁长 l 的物理 意义,使频率方程虽不显含系统参数,但仍可间接 通过时间、空间还原系数与系统参数联系在一起. 因此,由广义频率方程求解所得到的频率-梁 长曲线(ω_i -l曲线)其实是适用于系统参数任意变 化的预解集,在正问题(频率计算)中,各系统参数 值是确定的,可由此直接计算时间、空间还原系数, 利用频率 - 梁长曲线实现对频率的定解.然而,在 双参数识别反问题中,在两个系统参数未知的条件 下,仅依靠频率 - 梁长曲线是不够的,但通过式 (17),发现了有、无量纲两种体系间所隐含的频率 比互等关系式(21),得到频率比 - 梁长曲线(η_{ij} -l曲线),实现了对动力学系统多模态特性的利用, 提出了 2.1 节所示的算法流程,最终,实现了对双 参数识别计算的简化.

3 两类算例

为验证本文无量纲方法与双参数识别算法的 可靠性与准确性,下文分别在正、反两类求解问题 上,与文献算例进行比对.

3.1 正问题

表 2 分列了各组算例所采用的系统参数值,表 3、表 4 则给出了在两端固定、两端简支、固定一自 由三种边界条件下的计算频率的对比情况.

	Table	2 System P	arameters	
System	$\widetilde{E}\widetilde{I}$	\widetilde{m} /	Ĩ/	\widetilde{k} /
number	$(N \cdot m^2)$	$(kg \cdot m^{-1})$	(m)	$(kg \cdot m^{-2})$
1	6.25E+07	2.40E + 02	6.00	1.00E+07
2	1.00E+00	1.00E+00	1.00	1.00E+00

表 2 系统参数表

表 3 计算频率对比表系统 1 Table 3 Computational frequency comparison system 1

	Boundary condition						
$\widetilde{\omega}_i^{\text{cal}}$ (rad s ⁻¹)	Simply su	pported at	both ends	Fixed	-Fixed		
(ruu b)	Ref.[11]	FEM	Current	FEM	Current		
$\widetilde{oldsymbol{\omega}}_1^{\mathrm{cal}}$	247.470	247.543	247.467	377.275	377.160		
$\widetilde{\boldsymbol{\omega}}_2^{\mathrm{cal}}$	595.680	595.866	595.684	898.019	897.744		
$\widetilde{\boldsymbol{\omega}}_3^{\mathrm{cal}}$	1275.600	1275.969	1275.579	1726.482	1725.954		
$\widetilde{\boldsymbol{\omega}}_4^{\mathrm{cal}}$	2247.700	2248.447	2247.759	2841.278	2840.409		
$\widetilde{\boldsymbol{\omega}}_5^{\mathrm{cal}}$	3503.500	3504.634	3503.563	4238.325	4237.030		
$\widetilde{\pmb{\omega}}_6^{\mathrm{cal}}$	5040.700	5042.234	5040.696	5916.291	5914.488		
$\widetilde{\boldsymbol{\omega}}_7^{\mathrm{cal}}$	6858.300	6860.446	6858.358	7874.666	7872.274		
$\widetilde{\pmb{\omega}}^{\mathrm{gal}}_{\mathrm{gal}}$	—	—	—	10113.218	10110.160		
$\widetilde{\pmb{\omega}}\S^{\mathrm{al}}$	_	—	_	12631.823	12628.030		
$\widetilde{oldsymbol{\omega}} ^{\mathrm{cal}}_{\mathrm{10}}$	_	—	_	15430.410	15425.820		

表 4 计算频率对比表系统 2

	Table 4	Computational	frequency	comparison	system 2
--	---------	---------------	-----------	------------	----------

		Bour	ition		
$\widetilde{\omega}_{i}^{\text{cal}}$ (rad·s ⁻¹)		Fixed-Free			Fixed
	Ref.[12]	Ref.[14]	Current	Ref.[15]	Current
$\widetilde{oldsymbol{\omega}}$ $\widetilde{\mathrm{f}}^{\mathrm{al}}$	3.655	3.655	3.655	22.396	22.396
$\widetilde{oldsymbol{\omega}}_2^{\mathrm{cal}}$	22.057	22.057	22.057	61.681	61.681
$\widetilde{oldsymbol{\omega}}_3^{\mathrm{cal}}$	61.705	61.705	61.705	120.908	120.908
$\widetilde{oldsymbol{\omega}}_4^{\mathrm{cal}}$	_	120.906	120.906	199.862	199.862
$\widetilde{\boldsymbol{\omega}}_{5}^{\mathrm{cal}}$	—	199.862	199.862	298.557	298.557

值得注意的是,文献[12]以有量纲动力学系统 求解、文献[13]以部分无量纲动力学系统求解、文 献[14,15]以完全无量纲动力学系统求解,本文则 采用新无量纲方法,基于归一化动力学方程与广义 频率方程求解.可以看出,在以上各边界条件下,本 文计算频率均与文献算例吻合良好,表明本文无量 纲方法具有良好的可靠性与准确性.

3.2 反问题

本文以两端固定边界为例,采用系统1相关计 算频率对实测频率进行模拟,以研究本文双参数识 别算法的稳定性,考虑频率测试的不确定性,现对 计算频率施加不同等级随机噪声,模拟实测频率的 计算公式可表示如下:

 $\tilde{\omega}_{i}^{\exp} = \tilde{\omega}_{i}^{\operatorname{cal}} (1 + \xi R_{i})$ (31) 其中, $\omega_{i}^{\exp} = \omega_{i}^{\operatorname{cal}}$ 分别代表模拟实测频率与计算频 率; R_{i} 为[-1,+1]区间上符合正态分布的随机变 量; ξ 为噪声等级,本文考虑 0.1%, 0.5%, 1%,

表 5 模拟实测频率表 Table 5 Simulated measured frequency

	Tuble 0	onnutati	eu meusure	a mequene	.,	
ω_i^{exp}		Noise level ξ				
(rad·s ⁻	⁻¹) 0.1%	0.5%	1%	2 %	5 %	
$\boldsymbol{\omega}_1^{\mathrm{exp}}$	377.183	377.324	377.162	379.103	380.320	
ω_2^{exp}	897.859	897.265	899.255	897.437	886.255	
ω_3^{exp}	1726.290	1726.487	1731.019	1720.160	1737.528	
ω_4^{exp}	2840.496	2839.857	2836.602	2840.097	2842.284	
$\omega_{5}^{\mathrm{exp}}$	4237.009	4237.697	4222.580	4240.426	4267.442	
ω_6^{exp}	5914.589	5917.189	5911.860	5966.990	5915.135	
$\omega_7^{\rm exp}$	7872.863	7864.332	7851.950	7834.941	7970.181	
ω_8^{exp}	10110.215	10110.488	10127.235	10119.471	10040.602	
ω_9^{exp}	12628.876	12634.238	12682.759	12677.809	12672.182	
$\boldsymbol{\omega}_{10}^{\mathrm{exp}}$	15426.832	15425.915	15438.327	15487.468	15426.555	

2%,5%等5种不同等级噪声,各噪声等级对应的 模拟实测频率如表5所示.

本文选取 0.1%,0.5%两级噪声所对应的模拟 实测频率计算各阶频率比 η_{ii},并以不同阶次频率 比分别进行识别计算,分析频率比的选择与参数识 别误差的关系,研究适于参数识别的最优频率比, 频率比的组合方式如表 6 所示,*i*、*j*分别代表分 子、分母有(无)量纲频率的阶次.

	Tal	ole 6	Free	quenc	y rati	o cor	nbina	tion	
j					i				
1	2	3	4	5	6	7	8	9	10
2	_	3	4	5	6	7	8	9	10
3	_	_	4	5	6	7	8	9	10
4	_	_	_	5	6	7	8	9	10
5	_	_	_	_	6	7	8	9	10
6	_	_	_	_	_	7	8	9	10
7	_	_	_	_	_	_	8	9	10
8	_	_	_	_	_	_	_	9	10
9	_	_	_	_	_	_	_	_	10

表 6 频率比组合表

利用表 6 所示的 45 种频率比分别进行参数识别计算,绘制频率比一识别误差散点图,并对散点进行拟合,分析不同频率比的选择与弯曲刚度、地基刚度识别误差的联系.

(bending stiffness $\widetilde{E}\widetilde{I}$)

由图 4、图 5 可知:(1)弯曲刚度的频率比一识 别误差拟合曲线整体平顺,无明显单调性,表明对 于弯曲刚度的识别,频率比的选择对其识别精度无 明显影响.(2)地基刚度的频率比一识别误差散点 呈明显阶梯状分布,相应的拟合曲线也具有明显的 单调性,均体现出地基刚度的识别误差随频率比分 母频率阶次的增大而增大的趋势,反映出低阶频率 对地基刚度的变化更为敏感的特性.

基于以上发现可知,对 Winkler 地基梁动力学 系统进行参数识别时,应尽量选取低阶频率作为频 率比分母频率以提高识别精度.因此,本文选取结 构基频作为频率比分母频率,以 2~10 阶频率作为 频率比分子频率,分别以为频率比进行参数识别计 算,取 9 组识别值的平均值作为参数识别最终值. 下表 7 分列了不同噪声等级下弯曲刚度与地基刚 度的识别误差.

表 7	参数识别误差表	
Table 7 Relative e	error of parameter	identification
Noise level C	Relative e	rror (%)
noise level ç	$ E_r(\widetilde{E}\widetilde{I}) $	$ E_r(\widetilde{k}) $
0.1%	0.01	0.03
0.5%	0.08	0.33
1.0%	0.44	1.06
2.0%	0.64	3.26
5.0%	1.21	5.47

由表 7 可知,在以上 5 种不同等级噪声影响 下,根据本文参数识别算法,对弯曲刚度的识别误 差小于 1.21%,对地基刚度的识别误差小于 5.47%,本文参数识别算法具有良好的识别精度, 可对 Winkler 地基梁动力学系统的系统参数进行 有效识别.

67

4 结论

为简化 Winkler 地基梁动力学系统的双参数 识别计算,本文提出新无量纲方法,对 Winkler 地 基梁动力学系统进行无量纲化,实现了动力学方程 的归一化,得到与系统参数解耦的广义频率方程, 在此基础上,建立基于频率比互等关系的双参数识 别算法,对该系统的弯曲刚度与地基刚度进行识 别,主要研究结论如下:

(1)基于本文所提出的新无量纲方法,该系统 的动力学方程与频率方程均实现了与系统参数的 解耦,适用于具有任意系统参数值的 Winkler 地基 梁动力学系统.

(2)仅需对广义频率方程进行一次求解即可在 相应边界条件下得到频率、频率比关于无量纲梁长 的预解集,该预解集具有适用任意系统参数值的一 般性,仅需由时间、空间还原系数所建立的线性转 换关系即可实现对该系统正、反两类求解问题的定 解,避免了传统求解方法因系统参数值的改变而导 致重复迭代求解的情况,实现了解的一般化.

(3)本文双参数识别算法的计算仅涉及单变量 超越方程的求解与线性变换,避免了传统双参数识 别算法中双参数超越方程组的非线性迭代计算,实 现了计算的简化.

(4)本文双参数识别算法对弯曲刚度的识别误 差小于 1.21%,对地基刚度的识别误差小于 5.47%,具有良好的识别精度,可对 Winkler 地基 梁动力学系统的系统参数进行有效识别.

参考文献

- [1] MUTMAN U. Free vibration analysis of an Euler beam of variable width on the winkler foundation using homotopy perturbation method [J]. Mathematical Problems in Engineering, 2013, 2013; 721294.
- [2] 马建军,刘齐建,王连华,等. Winkler 地基上有限 长梁非线性自由振动 [J]. 工程力学, 2012, 29(8): 58-62.

MA J J, LIU Q J, WANG L H, et al. Non-linear free vibration of finite-length beams on the winkler foundation [J]. Engineering Mechanics, 2012, 29 (8): 58-62.(in Chinese)

[3] 陈建兵,孙涛,黄凯,等.大型海上风力发电高塔系

统一体化分析建模研究 [J]. 动力学与控制学报, 2017, 15(3): 268-278.

CHEN J B, SUN T, HUANG K, et al. Study on integrated numerical modeling of offshore wind turbine tower systems [J]. Journal of Dynamics and Control, 2017, 15(3): 268-278.(in Chinese)

[4] 李欣业,张华彪,郭晓强.工程中的振动问题的研 究进展[J].动力学与控制学报,2022,20(6):1-9.

> LI X Y, ZHANG H B, GUO X Q. Research progress of vibration problems in engineering [J]. Journal of Dynamics and Control, 2022, 20(6): 1-9. (in Chinese)

- [5] 易伟建,刘霞.弹性地基梁损伤诊断研究[J].计算 力学学报,2003,20(4):467-471+489.
 YI W J, LIU X. Damage diagnosis of beams on elastic foundation [J]. Chinese Journal of Computational Mechanics, 2003, 20(4):467-471+489.(in Chinese)
- [6] 管德清,黄燕.基于转角模态小波分析的弹性地基梁损伤识别研究[J].振动与冲击,2008,27(5): 44-47+172-173.

GUAN D Q, HUANG Y. Damage identification of elastic foundation beams based on wavelet transform of rotating angle modes [J]. Journal of Vibration and Shock, 2008, 27(5): 44 - 47 + 172 - 173. (in Chinese)

- [7] GE H H, XU J Y. A numerical method for cavity identification in beams on an elastic foundation [J]. Tsinghua Science & Technology, 2007, 12(5): 540 -545.
- [8] BOZYIGIT B, BOZYIGIT I, YESILCE Y, et al. Crack identification in multi-span beams on elastic foundation by using transfer matrix method [C]// Proceedings of the 13th international conference on damage assessment of structures. Singapore: Springer, 2020: 402-409.
- [9] WU W H, PRENDERGAST L J, GAVIN K. An iterative method to infer distributed mass and stiffness profiles for use in reference dynamic beam-Winkler models of foundation piles from frequency response functions [J]. Journal of Sound and Vibration, 2018, 431: 1-19.
- [10] 虞爱民,李享荣,柏健锋.有限长弹性地基梁地基 系数的识别[J].噪声与振动控制,2000,20(6):2 -3+13.
 - YU A M, LI X R, BAI J F. Identification of the

foundation coefficient of the beams on elastic foundations with finite length [J]. Noise and Vibration Control, 2000, 20(6): 2-3+13.(in Chinese)

[11] 楼梦麟, 沈霞. 弹性地基梁振动特性的近似分析方法 [J]. 应用力学学报, 2004, 21(3): 149-152+ 170.

LOU M L, SHEN X. An approach for analyzing dynamic characteristic of reinforced concrete beam on elastic foundation [J]. Chinese Journal of Applied Mechanics, 2004, 21(3): 149-152+170. (in Chinese)

- [12] KACAR A, TAN H, KAYA M. Free vibration analysis of beams on variable winkler elastic foundation by using the differential transform method [J]. Mathematical and Computational Applications, 2011, 16(3): 773-783.
- [13] ADAIR D, SEGIZBAYEV Z, GENG X Y, et al.

Vibrations of an euler-bernoulli nanobeam on a winkler/pasternak-type elastic foundation [C]// 2018 IEEE 13th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS). New York: IEEE, 2018: 664-667.

- [14] BALKAYA M, KAYA M O, SA GLAMER A. Analysis of the vibration of an elastic beam supported on elastic soil using the differential transform method [J]. Archive of Applied Mechanics, 2009, 79 (2): 135-146.
- [15] CUNHA A, CAETANO E, RIBEIRO P, et al. Adomian decomposition method for vibration of nonuniform euler beams on elastic foundation[C]// Proceedings of the 9th International Conference on Structural Dynamics. Dortmund, Germany: EASD, 2014.