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Drag Reduction Optimization of Airship Hull Based on Cross-Flow
Modified Transition Model
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Abstract Hull shape optimization is one of the effective methods for drag reduction of stratospheric air-
ship. Transition, especially cross-flow transition, has a great influence on the drag characteristics of
three-dimensional hull. SST k-w turbulence model coupled with y-Re,-CF transition model considering
cross-flow effect was used to calculate the flow around the hull, the calculation was running on the high-
precision CFD software platform. Firstly, the numerical method was verified by a classical example of 6
1 prolate spheroid, the results showed that 7-Re,~CF transition model can better predict the transition
position than the original version, and it also has good accuracy in predicting the drag characteristics. Be-
sides, ¥-Re,~CF transition model can reflect the influence of cross-flow effect at different angles of at-
tack. On this basis, hull optimization design was carried out considering the cross-flow effect, involving
geometric factors including hull length, slenderness ratio and maximum diameter position. Compared
with Goodyear airship with traditional ellipsoid hull shape, the drag reduction of optimized hull shape at
0° attack reached around 40%.
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Table 1 Drag coefficient and friction coefficient of two

kinds of hull shape under 0°attack

Hull shape Cay Cy
Traditional ellipsoid hull shape 0.0101 0.0140
Optimized hull shape 0.00584 0.00827
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Fig.12 Friction coefficient distribution of two kinds

of hull shape with different attack
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Table 2 Drag reduction at different angles of attack

al®) Drag reduction
0 40.6%

5 27.7%

10 16.5%

15 20.7%

20 17.6%

25 16.9%
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