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Abstract It is known that there are many structural parameters in the nonlinear multi-stable energy
harvesting system model. Due to the inevitable errors in the process of measurement, processing and as-
sembly, these structural parameters are uncertain. Even slight variation of key parameters may lead to a
significant influence on the output voltages. Especially when multiple uncertain parameters exist at the
same time, it may have a more complex impact on the energy harvesting performance of the system.
Therefore, it is of great value to study the stochastic behavior of nonlinear energy harvesting systems

with multiple uncertain parameters. In this paper, a bistable energy harvesting system with double un-
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certain parameters is investigated. Firstly, the equilibrium point stability and static bifurcation of deter-
ministic bistable systems are analyzed by using Routh-Hurwitz theorem. Then, by using the orthogonal
polynomial approximation method, the stochastic bistable system (TSBS) with two independent uncer-
tain electromechanical coupling coefficients is reduced into an equivalent deterministic extended-order
system, so that the stochastic response problem of TSBS is transformed to the response problem of an e-
quivalent system. After that, from both global and local perspectives, the effects of uncertain parameters
on system dynamics and power generation performance are revealed by comparing the attractor, attrac-
tion domain, phase orbit, mean square voltage, and energy conversion rate between the equivalent sys-
tem and the deterministic system. The results show that in some sensitive parameter ranges, the uncer-
tainty of the two electromechanical coupling coefficients will lead to the change of the dynamical motion
state of the system, and the greater the intensity of the uncertain parameters are, the earlier the system
will enter the chaotic state through the period doubling bifurcation cascade. In addition, under the uncer-
tainty of the two electromechanical coupling coefficients, the mean square voltage will decrease to a cer-
tain extent. Compared with the electromechanical coupling coefficient in the electrical equation, the elec-
tromechanical coupling coefficient in the mechanical equation has a greater impact on the system. Fur-
thermore, when the two uncertain parameters both exist, the energy harvesting performance of the sys-

tem changes more significantly.

Key words bistable energy harvester, uncertain parameter, orthogonal polynomial approximation

method, electromechanical coupling coefficient
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