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Analysis of Flow Induced Instability of Coaxial Cylindrical Shells with End
Constraints by Finite Difference Method "

Zhang Chengxiang' Zhang Dechun' Li Peng!"™ LuJun® Zhu Yizhang!
(1. School of Mechanics and Aerospace Engineering, Southwest Jiaotong University, Chengdu 610031, China)
(2. Nuclear Power Institute of China, Chengdu 610213, China)

Abstract Based on the classical shell and ideal potential flow theory, the motion equation of the fluid-
structure coupling system of the coaxial cylindrical shell is established, and the finite difference method
(FDM) is introduced to discretize the motion equation. An expansion method applying the piecewise
function as the basis function is proposed in this paper. A fluid-structure coupling solution strategy of a
coaxial cylindrical shell based on FDM is developed. We apply this method first to solve the vibration fre-
quency of the coaxial cylindrical shell in a static fluid and compare it with the ANSYS to verify the cor-
rectness of this method. Then, the influence of structural parameters of coaxial cylindrical shell on its vi-
bration frequency in hydrostatic is explored; Finally, the hydraulic-elastic instability of the coaxial cylin-

drical shell system is studied.
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