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Adult Hippocampal Neurogenesis for Improved

Pattern Separation Robustness”

Wang Zengbin Sun Xiaojuan'

(School of Science,Beijing University of Posts and Telecommunications,Beijing 100876 ,China)

Abstract Adult hippocampal neurogenesis (AHN) has been considered to effectively participate in the
dentate gyrus (DG) network to strengthen the function of pattern separation. Although the potential role
of neurogenesis in pattern separation has been theoretically studied, the detailed effects of newborn gran-
ule cells on information processing and network regulation are still under debate. For the aforementioned
difficulty, this work introduce 4-6-week newborn granule cells as independent information processing
units and propose a novel computational model of the DG network with neurogenesis. This work investi-
gate the contribution of newborn granule cells to pattern separation under different input stimuli. With
the aid of simulation results,it shows that newborn granule cells play different roles in the DG network
when receiving different intensities of stimulation. Under low intensity stimulus, newborn granule cells
can restore the information representation ability of the network and avoid pattern separation failure by
taking advantage of their easily activated neuronal properties. Under high intensity stimulus,as a kind of
interneurons.newborn granule cells can enhance the feedback inhibition effect of local circuits to improve

the sparsity of mature granule cells,and ultimately improve the function of pattern separation. There-
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fore,this model predicts a critical role of adult hippocampal neurogenesis in pattern separation robustness

under more subtle and extensive input.

Key words adult hippocampal neurogenesis,
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Fig.1 Hippocampal dentate gyrus (DG) network framework and
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Table 1 Parameter values of neurons in the model
Symbol Quantity GC MC BC HIPP abDGC
N Number 2000 80 100 40 100
E,/mV Resting potential —87 —64 —52 —59 —78
g:/nS “Leak” conductance 0.2639 4.53 18.054 1.930 0.2159
C,./nF Membrane capacitance 0.0068 0.2521 0.1793 0.0584 0.02
V reset/mV Reset voltage —74 —49 —45 —56 —63
Vi/mV Threshold voltage —56 —42 —39 —50 —35.9
A1/mV Slope factor — 2 2 2 2
a/nS Adaptation coupling parameter 2 1 0.1 0.82 —
7,,/ms Adaptation time constant 45 180 100 93 101.5
b/nS Spike triggered adaptation 0.045 0.0829 0.0205 0.015 —
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