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Research on Multi-Field Coupling Characteristics of Slipper
Pair Based on CFD"
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Abstract  As one of the main frictional subsets of swash plate axial piston pumps, the slipper pair main-
ly work in complex and extreme environments. In this paper, basic governing equations of flow field in
the slipper pair are established, and a finite element model of the slipper pair is constructed. After that,
the flow field is simulated by CFD, and multi-field coupling of the slipper pair is analyzed. The changes
in pressure and velocity fields of the oil under different working conditions and the effects of fluid pres-
sure and temperature on the total deformation of the slipper pair are obtained. The results show that as
working pressure increases, the pressure loss of oil in the damping line increases, and the number and
size of vortices in the oil cavity increase. In addition, it is also found that the oil temperature has a grea-
ter influence on deformation of the slipper pair. The current work provides some technical support for de-
sign of the slipper pair, which is of great significance for improving overall performance of the slipper

pair.
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Fig.1 Structure of the slipper pair
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Fig.2 Flow chart of multi-field coupling calculation of slipper pair
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Table 1 Hydraulic oil properties
Parameters Hydraulic oil
Density 860
Specific heat capacity 1880
Thermal conductivity 0.12
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Table 2 Material parameters of slipper pair
Parameters Slipper Swash plate
Density 8500 7300
Specific heat capacity 390 460
Thermal conductivity 92 54.4
Coefficient of linear expansion 18.8 11
Modulus of elasticity 90 154
Poisson’s ratio 0.32 0.3
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Fig.10  The total deformation of the slipper pair under different working conditions
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