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Damage Identification of Rotating Beams Based on Mode
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Abstract In this paper. a rotating cantilever beam is used to simulate the rotor helicopter blade struc-
ture, and the damage identification problem is studied. Firstly, based on finite element method and
Hamilton variational principle, a dynamic model of rotating structure is established. The model is veri-
fied by comparing theoretical and experimental results. Secondly, the damage identification of the rota-
ting cantilever beam is studied by choosing different mode parameters (displacement mode and strain
mode). Thirdly, for the displacement mode, based on singularity analysis characteristics of wavelet
transform, the method of damage identification assisted by wavelet coefficients is studied. The results
show that the damage identification effect of strain mode is better for rotating structure, and the dis-
placement mode can achieve a more accurate damage identification if it can be combined with the singu-

larity analysis of wavelet transform.
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Fig.1 Rotating cantilever beam and damage diagram
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Table 1  Comparison of natural frequencies of
structures without rotation
wr= 0rad/s, S = 0% wr= 0 rad/s, S= 30%

FEM Experiment FEM Experiment
1st order 16.53 16.17 16.48 15.83
2nd order 103.59 101.80 102.54 103.80
3rd order 289.99 291.50 289.86 281.30

F2 AAFETHTENRESEHERNE(H) 3L
Table 2 Comparison of natural frequencies of
structures with rotation

wr=50 rad/s, S=30%

wr =50 rad/s, S=0%

FEM COMSOL FEM COMSOL
1st order 18.60 18.60 18.53 18.56
2nd order  105.06 105.04 103.30 103.96
3rd order 290.61 290.48 290.38 290.35
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