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Table 1  Main parameters of FPSO

Term Notation Value
Draft d 17 m
Displacement A 262,430 T
Distance from cenlerA of gravity 1cc 170. 366 m
to after perpendicular
Distanc.e from cen.ter of vee 17.81 m
gravity to baseline
Di from center of gravi
istance from 'center ol gravity Ly 101.384 m
to center of internal turret
Radius of gyration around X axis by 19.618 m
Radius of gyration around Y axis k,, 73.724 m
Radius of gyration around Z axis k. 74.342 m
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Fig. 1 Description of coordinate systems
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Table 2 Low-frequency linear damping coefficient
caused by mooring system

Low - frequency linear damping coefficients Value
C 4.636 x 10° kg/s
c, 2.141 x 10°kg/s
Cyy 1.820 x 10" kgm®/s
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Fig.2  Free decay curves of roll and pitch
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Table 3  Critical damping ratios of roll and pitch

Damping component Roll Pitch
Total damping 9.3% 24.7%
Radiation damping 0 17.84%
Additional viscous damping 9.3% 6.86%
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Table 4 Test matrix

Sea Vi Wave height Wave period Wave height ~ Wave period
No. PP prototype ) /m  ( prototype)/s  (model)/mm  (model)/s
1 0.50 3.20 10.12 40.00 0.36
2 0.67 4.29 11.73 53.63 1.31
3 0.83 5.31 13.05 66.38 1.46
4 1.00 6.40 14.32 80. 00 1.60
5 117 7.49 15.49 93.63 1.73
6 1.33 8.51 16.52 106. 38 1.85
7 1.50 9.60 17.54 120. 00 1.96
801
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Fig.6 The comparison of equilibrium yaw angles between
numerical simulation and model tests
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Table 5 Motion responses under different A/L,p

Y
0.85 0.540 0.004 -0.046
1.03 1.455 1.274 40.005
1.64 5.261 6.692 76.095
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Table 6 Motion responses under different wave steepness

Wave steepness H;i:’e /'R(O})l) );i“;
1/30 2.430 2.131 39.955
1/40 1.817 1.593 39.955
1/50 1.455 1.273 39.955
1/60 1.210 1.059 39.955
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Fig.8 Motion responses under different wave steepness
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Table 7 Motion responses with different initial yaw angles

Initial I Heave Roll Yaw
nitial yaw angle Jm /(%) /(%)
0° 4.352 0.031 2.233
35° 6.345 5.578 81.280
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Fig.9  Motion responses under different initial yaw angle
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RESEARCH ON YAW INSTABILITY OF FPSO BASED ON
FULLY COUPLED TIME-DOMAIN SIMULATION®

Liu Yaliu ' Chen Diyu >>*° Liu Ligin ' Huang Zhengxin '
(1. Tianjin University, State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin 300354, China)
Yy Y Y Y Y 8 g Y Y
(2. CCCC second harbor engineering company, Wuhan 430040, China)
(3. Key Laboratory of Large-span Bridge Construction Technology, Wuhan 430040, China)
(4. Research and Development Center of Transport Industry of Intelligent Manufacturing Technologies
of Transport Infrastructure, Wuhan 430040, China)
(5. CCCC Highway Bridge National Engineering Research Centre Co. Lid, Wuhan 430040, China)

Abstract In order to study the yaw instability of FPSO in regular waves, nonlinear fully coupled 6-DOF motion
equations of moored floating body are established and solved numerically. The accuracy of equation is verified by
comparing equilibrium yaw angles calculated by numerical simulation with model test. The influence of yaw insta-
bility on motion responses is studied. The influences of initial yaw angle and wave steepness on yaw instability
and motion responses are also studied. The results show that the FPSO may lose the weathervane effect at particu-
lar wavelength to ship length ratio, and this increases the wave loads acting on the hull which arouse greater re-
sponses in roll and heave. The wave steepness doesn’ t affect the final equilibrium yaw angle. However, it affects
the time required to reach equilibrium and the response amplitude. The initial yaw angle affects the final equilib-

rium position and motion response of the FPSO.

Key words yaw instability,  numerical simulation, fully coupled equation

Received 17 June 2021, revised 11 August 2021.
# The project supported by Tianjin Municipal Transportation Commission Project (2018-h2).
F Corresponding author E-mail ; liuliqin@ tju. edu. cn



