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Fig. 1  Axially moving plate with discrete elastic supports
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Table 1 Parameter values in numerical examples

Parameter Value
Elastic Modulus E 210 GPa
Poisson’ s ratio y 0.3

Density p 7850 kg/m®

Length a I'm

Width b I'm
Thickness h 0.02m,0.2m
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Fig.2  ANAYS results of the first three modes
of the plate fixed at four edges
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Table 2 The natural frequencies of a stationary
plate fixed at four edges
Thickness 0.02 m Thickness 0.2 m
Mode Frequency (Hz) Frequency (Hz)
1 182.9 1341.9
2-1 372.3 2349.2
ANSYS
2-2 372.3 2349.2
3 543.8 3159.0
1 183.0 1340.4
2-1 379.9 2361.3
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Table 3 The natural frequencies of a stationary plate fixed
on two opposite edges and the others free

Stiffness k=0 N/m  Stiffness k= + ¢ N/m

Mode Frequency (Hz) Frequency (Hz)
1 110.07 130.75
ANSYS 2 130.75 151.39
3 215.24 302.71
""""""""""""""" T T
Present Work 2 134.29 156.71
3 221.31 317.11
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Fig.4 The complex frequencies of the elastically supported
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FINITE ELEMENT MODELING AND APPLICATION
ON FREE VIBRATION OF AXTALLY MOVING THIRD-ORDER

SHEAR DEFORMATION PLATES"

Zhu Chengxiu'  Sui Suihan® Peng Danhua® Li Cheng'’
(1. School of Rail Transportation ,Soochow University, Suzhou 215131, China)
(2. School of Mechanical Engineering ,Shangqiu Institute of Technology ,Shanggiv 476000, China )

Abstract  On the basis of the third-order shear deformation theory, finite element equation of the axially moving
plate is established via principle of virtual work. The solution domain is discreted by applying a four-node quadri-
lateral element containing nodal deflection, its slope and cross-sectional rotation angle. Then the constraint of dis-
crete spring supports is introduced into the finite element equation in the form of potential energy for the first
time. In order to prove effectiveness, the present results are compared with those from ANSYS under the condi-
tions of different boundary conditions and different support stiffness. Subsequently, the relationships between the
axial velocity as well as spring stiffness and the real and imaginary parts of the complex frequencies are obtained
for the axially moving thin plate with two kinds of boundary conditions. It shows that the axially moving plate may
be instable with a high velocity, and the vibration frequency increases with a high spring stiffness. Finally, the
relationship between the plate thickness and the complex frequency is demonstrated, and the effect of plate thick-

ness on stability of the axially moving third-order shear deformation plate is thus revealed.

Key words Axially moving plates, elastic supports, free vibration,  third-order shear deformation
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