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Fig. 1  Schematic diagram of butted cylindrical
shell structure
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Table 1  Parameters of butted cylindrical shell structure
Parameters Symbol Vlue
Length/mm Li(i=1,2) 500
Thickness/mm by 30
Inner diameter/mm D, 292
Outside diameter/mm D, 300
Extension length/mm hy 35
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Fig.2  Finite element model of butted cylindrical shell structure
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(b) — Wiz 304.85 Hz
(b) Second order mode 304.85 Hz

(a) —BiAs 138.15 Hz
(a) First order mode 138.15 Hz

(c) =Biiizs 355.78 Hz
(c) Third order mode 355.78 Hz

(d) PUBMEAS 385.27 Hz
(d) Fourth order mode 385.27 Hz

(2) LT BAS 661.37 Hz
(g) Fifth order mode 661.37 Hz

() N BiZS 664.55 Hz
(f) Sixth order mode 664.55 Hz

(e) LIS 669.16 Hz
(e) Seventh order mode 669.16 Hz

(h) J\BTBEZS 799.07 Hz
(h) Eighth order mode 799.07 Hz
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Fig.3 Finite element analysis results of the first 8 modes
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Fig.4 Schematic diagram of experimental modal test system
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Fig.5 Position of pickup points for butted cylindrical shell structure
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Fig. 6  Suspension modes
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Table 2 Comparison of natural frequencies

under different suspension modes

LMS Test. Lab

Difference/ Error/
Mode Penetrating/ Non-penetrating/
Hz %
Hz Hz

1 133.84 134.03 0.19 0.14
2 289.02 290.98 1.96 0.67
3 356. 46 356.33 0.13 0.04
4 381.10 381.69 0.59 0.15
5 634.54 635.96 1.42 0.22
6 634.10 636.22 2.12 0.33
7 657.85 656.30 1.55 0.24
8 787.53 786.78 0.75 0.09
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Fig.7 Stabilization diagram of system under different

suspension modes
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Table 3 The first 8 order modal parameters
of butted cylindrical shell structure

Mode Frequency Damping Modal characteristics
133.84 Hz 0.32 % m=2,n=2
289.02 Hz 0.26 % m=2,n =2, symmelry
356.46 Hz 0.12 % m=2,n=3

381.10 Hz 0.13 %
634.54 Hz 0.23 %
634.10 Hz 0.23 %
657.85 Hz 0.16 %
787.53 Hz 0.15 %

m=2,n =3, symmetry
m=2,n=4
m=2,n =4, symmetry

m=4,n =2, symmetry

(o = Y S

m=4,n=3
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Table 4  Comparison of modal experimental values
and finite element results

Modes Experiment ABAQUS Difference Error
result/Hz result/Hz /Hz /%
1 133.84 138.15 4.31 3.12
2 289.02 304.85 15.83 5.19
3 356.46 355.78 0.68 0.19
4 381.10 385.27 4.17 1.08
5 634.54 664.55 30.01 4.52
6 634.10 669. 16 35.06 5.24
7 657.85 661.37 3.52 0.53
8 787.53 799.07 11.54 1.44
RN
1:133.841

2:289.024

3:356.46

4:381.104

5:634.54

6:634.10

7:657.85

8:787.53

(a) MAC Hi L
(a) Top view of MAC matrix

(b) MAC KRR K]

(b) Side view of MAC matrix
&8 SERELIZS M MAC A

Fig.8 MAC matrix of experimental modal analysis
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MODAL ANALYSIS OF BUTTED CYLINDRICAL SHELL STRUCTURE "

Li Xulong' Zhang Zhong® Wei Sha'*" Ding Hu'” Chen Liqun'”

(1. Shanghai University, School of Mechanics and Engineering Science, Shanghai 200444, China)
(2. Science and Technology on Reliability and Environment Engineer Laboratory, Beijing Institute
of Structure and Environment Engineering, Beijing 100076, China)

(3. Shanghai Institute of Applied Mathematics and Mechanics, Shanghai 200072, China)

Abstract Butted cylindrical shell structure is widely used in aerospace, shipbuilding, civil engineering and me-
chanical engineering. Modal analysis is an important research direction to study its structural characteristics. This
study briefly introduces the modal analysis technology and the basic principle of the polyreference least-squares
complex frequency-domain method ( PolyMAX) , and the finite element modal analysis and experimental modal a-
nalysis of butted cylindrical shell structures are carried out. In the process of experimental modal analysis, the
experimental realization of the free boundary and the correctness of the analysis results are discussed, and the a-
nalysis results are compared with the finite element modal analysis results. The results show that while the butted
cylindrical shell structure has the general vibration characteristics of the cylindrical shell structure, the asymmet-

ric vibration with the flange as the boundary occurs due to the existence of the docking form.

Key words butted cylindrical shell structure,  modal characteristics,  finite element analysis,  experimen-

tal modal analysis,  polyreference least-squares complex frequency-domain method

Received 11 August 2021, Revised 1 September 2021.
# The project Supported by the National Natural Science Foundation of China (12072181, 11702170) and the State key Laboratory of Mechanical Sys-
tems and Vibration( MSV202105)

F Corresponding author E-mail ;s_wei@ shu. edu. cn



