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STABILITY ANALYSIS OF AXIALLY EXCITED BEAM
WITH ELASTIC BOUNDARY

Zhang Chi Mao Xiaoye Ding Hu' Chen Liqun
(' School of Mechanics and Engineering Science ,Shanghai University ,Shanghai 200444 | China)

Abstract For beams with elastic supports, influence of the spring stiffness on parametric stability boundary of an
axially excited beam is presented for the first time. Here, based on Hamilton’ s principle, dynamic governing e-
quation of the axially excited beam supported by linear springs on both sides is established. The natural frequen-
cies of the beam with axial compression are calculated by the analytical method. The relationships between the
stiffness of the supporting spring, the natural frequencies and the critical loading of the system are obtained.
Based on Galerkin truncation, semi-analytical and numerical solutions of the steady-state response are obtained by
the multi-scale method and the Runge-Kutta method. The effects of the excitation amplitude, supporting stiffness
and the average axial force on the nonlinear response are discussed. The stability boundary of the parametric reso-
nance is obtained by the Routh-Hurwitz stability criterion. The influence of the supporting stiffness and the damp-
ing on the stability of the parametric resonance are fully discussed. It is found that the stiffness of the supporting
spring can significantly change the parametric stability boundary of the beam. Therefore, the results will provide

guidelines for design of structures subjected to axial excitation.

Key words beam, elastic support, axial excitation,  parametric resonance,  nonlinear vibration,

stability boundary
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