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RESEARCH ON STRANGE NONCHAOTIC DYNAMICS
OF PIECEWISE NONLINEAR ROLLING MILL SYSTEM*

Zeng Qing  Yue Yuan' Li Gaolei
(School of Mechanics and Engineering ,Southwest Jiaotong University ,Chengdu 610031, China )

Abstract Considering a class of quasi-periodic excited piecewise nonlinear rolling mill system, a wealth of sin-
gular and nonchaotic dynamic phenomena are discovered. In this system, we mainly study generation mechanism
of strange nonchaotic attractors and verification of the singularity of attractors. It is found through numerical meth-
ods that three routes can evolve into strange nonchaotic attractors, namely fractal route, intermittency route and
Heagy-Hammel route. The largest Lyapunov exponent is used to verify its nonchaotic characteristics, and its

strange property is verified by a rational number approximation to irrational number and phase sensitivity function.

Key words rolling mill system, quasi-periodic excitation, strange nonchaotic attractor, the largest Lya-

punov exponent, phase sensitivity function
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