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DYNAMIC ANALYSIS OF THE FIRING PATTERN IN THE
COUPLED PRE-BOTZINGER COMPLEX"
Qi Huiru Duan Lixia® Xu Hao
(School of Science , North China Universityof Technology .Beijing 100144 ,China)
Abstract Neurons within pre-Bétzinger complex have been found experimentally to exhibit different fir-

ing activities, One special firing pattern observed in experiment is the so called mixed bursting (MB)
characterized by combining two or more different types of short bursts within each cycle of a periodic
bursting solution. Using phase-plane analysis, fast-slow decomposition, ISI bifurcation, one-parameter
and two-parameter bifurcation analysis, we investigate effects of the calcium-activated nonspecific cation-
ic conductance (gcan) and the maximal SERCA (Vggrea) on the firing activities of the pre-Botzinger com-
plex, especially the mixed bursting pattern. We determine parameter region of Vggrea when concentration
of calcium changes periodically and propose the generation and transition mechanism of the bursting ac-
tivities. The results demonstrate that the calcium-activated nonspecific cationic current and Vgggea will af-

fect types of neuron bursting and cause mixed bursting.

Key words pre-Botzinger complex, mixed bursting,  bifurcation, fast-slow decomposition
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