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Table 1~ The system parameters: before and after optimization

Parameter Before optimization After optimization
k, 2.2x10*N/m 3.2x10*N/m
ky 1.35%10* N/m 0.75%10" N/m
¢ 1500 N's/m 204 N's/m
c, 3000 N's/m 814 N's/m
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RESEARCH ON OPTIMIZATION DESIGN METHOD OF DOUBLE
LAYER ACTIVE VIBRATION ISOLATOR SYSTEM *

Chang Yaopeng Zhou Jiaxi' Xu Daolin
(College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082 China)

Abstract Generally, a sufficient output force is crucial to obtain maximum performance in an active vibration isolation
system. To resolve conflicts between output force and maximum performance, an active double layer vibration isolation
system (DLVIS) is designed by applying a multi-objective optimization method with genetic algorithms. Theoretical anal-
ysis on the active DLVIS is carried out under different excitations and probe into the influence of parameters on the out-
put force. Furthermore, a comprehensive performance evaluation index is defined with weight coefficients and the opti-
mal parameters being achieved. Besides, a fuzzy proportional integral derivative algorithm is proposed to illustrate the
active vibration isolation system after optimization. A numerical example is given to evaluate the effectiveness of the opti-
mized active DLVIS. The results demonstrate that the displacement response of upper stages, relative displacement re-
sponse between the upper and lower stages, and output force can be substantially reduced by 32.7%, 67.5% and
55.4%, respectively, after optimization. Therefore, the optimized active DLVIS is a feasible power-saving solution for vi-

bration control.

Key words active vibration isolation, parameter analysis, optimization design, genetic algorithm
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