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MODELING AND ANALYSIS OF RESTRICTED N-BODY
PROBLEM WITH EPHEMERIS IN VICINITY OF PHOBOS *

Wu Xiaojie

Wang Yue'

Xu Shijie

(School of Astronautics, Beihang University, Beijing 102206, China)

Abstract

Mars and its natural moon, Phobos, are of great significance for deep space explorations. The N-Body Prob-

lem is necessary for the design of orbits around Phobos, since the traditional perturbed Keplerian orbit is proved to be

impossible in the vicinity of Phobos. A restricted N-Body Problem model with the ephemeris of celestial bodies is estab-

lished in Phobos’ body-fixed reference frame. The influencing factors considered in this model include: the polyhedron

gravity field of Phobos with the real attitude libration; Mars attractive force with J,; gravitational perturbations of Sun,

Jupiter and Earth. This model is further simplified according to its characteristics with an elliptical restricted three-body

problem model considering Phobos’ approximated harmonic libration and gravity harmonics being established. Orbits

are simulated with different models with the trajectories and ground tracks being depicted. Comparisons are made among

simplified models and the high-fidelity model to confirm the necessity of the proposed models.

Key words Mars-Phobos system, ephemeris,
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