下肢外骨骼膝关节模糊滑模位置控制器设计

李鹏杰[†] 王新蕊 李小奇 许国强 司访 张煜 叶冬雨 (中国兵器工业第二〇八所,北京,102202)

摘要 针对下肢助力外骨骼膝关节位置伺服系统运动过程中伺服精度要求高、冲击力矩大、负载变化范围广 等特点,提出了一种运用模糊规则调节的位置伺服系统滑模控制策略.该策略设计了一种新型带有积分项的 滑模面模糊调节部分的结构为单输入双输出,选用模糊规则调节新型终端滑模型趋近率来抑制滑模抖振.仿 真及实验表明,该控制策略稳定性和伺服跟踪性好,对负载干扰的鲁棒性强.

关键词 下肢外骨骼, 膝关节, 伺服系统, 自适应滑模, 位置控制

DOI: 10.6052/1672-6553-2020-101

引言

下肢助力型外骨骼系统是一种穿戴于人体的 助力装置,目前主要运用于单兵,以提高士兵的物 资搬运携行及快速机动能力.为贴合实战提高穿戴 舒适性,下肢助力外骨骼膝关节需具有贴合人体、 结构简单等特点,无法安装力矩传感器,因此大多 采用位置环控制.在人机系统行走步态周期内,外 骨骼膝关节面临负载冲击大、变化范围广等困难, 一般控制算法难以达到理想的控制效果.滑模控制 是一种变结构控制,拥有随时开关的特点,可以进 行设计且对象与扰动无关,响应速度快、对参数变 化及扰动不灵敏、物理实现简单,从而为复杂机电 系统控制提供了一种较好的解决方案.但是当系统 阶数较大或者结构参数不确定时,很难直接获取控 制率,同时抖振问题一直制约着滑模控制的工程化 运用.针对上述问题,国内外专家学者提出了很多 解决方案,主要有趋近率法、边界层法、观测器法和 与智能算法结合等.胡飞等^[1]设计了一种模糊 PID 滑模控制系统,有效解决了下肢外骨骼步态控制过 程中电液伺服系统存在的非线性、外在干扰等问 题.宋胜利等^[2]提出一种快速二阶终端滑模控制策 略,将绝对值函数隐藏在积分项里,提高了传统二 阶终端滑模控制的全局收敛性.熊少峰等^[3]提出一 种非奇异终端滑模方法,有效克服了奇异问题. Utkin V I 等^[4]在控制率中引入等效控制来预估外 界干扰.Elmokadem T等^[5]基于 super twisting 算法设计的二阶滑模观测器能够快速稳定估计出外界干扰,从而削弱抖振.上述研究大多采用传统趋近率和滑模面,很难实现系统快速性和稳定性的统一.

本文针对下肢助力外骨骼膝关节,设计了一种 自适应滑模位置控制器,采用单输入双输出的结构 形态,被控对象的输入量应用快速终端趋近率求 取,选择滑模函数S作为模糊控制器的输入项,分 别选择幂级趋近项系数k₁和指数趋近项系数k₂作 为模糊控制器的两个输出项,依据系统运动动态特 性与两个输出项之间的关系,制定模糊规则,使得 系统状态点远离滑模面时,趋近率大,离滑模面近 时,趋近率小,保证系统最大程度抑制抖振的同时 快速趋近滑模面.

1 下肢助力外骨骼膝关节结构及数学模型

1.1 膝关节结构及永磁同步电机数学模型

图1给出了下肢助力外骨骼膝关节结构图,系 统主要由永磁同步电机、减速器、编码器、驱动器等 部件组成.为提高控制精度,系统采用三闭环控制, 其中电流环和速度环采用数字控制,位置环的反馈 值取执行机构轴端编码器值.

在不影响控制性能的情况下,假设:涡流和磁 滞损耗几乎为零,电机铁芯饱和忽略不计,电机气 隙磁场皆均匀分布,三相绕组的感应电流均以正弦 波形式作用.依据假设的情况,采用*i_a*=0的控制

²⁰²⁰⁻⁰⁸⁻²⁸收到第1稿,2020-11-06收到修改稿.

[†]通讯作者 E-mail: 18201013816@163.com

策略实现对转矩控制的线性化和解耦控制.基于旋转坐标轴(d_q 轴坐标系),可以得出系统线性状态方程^[6-8]:

$$\begin{bmatrix} \frac{\mathrm{d}i_q}{\mathrm{d}t}\\ \frac{\mathrm{d}\omega_r}{\mathrm{d}t} \end{bmatrix} = \begin{bmatrix} -R/L & -P_n/L\\ 1.5P_n\psi_f/J & -B/J \end{bmatrix} \begin{bmatrix} i_q\\ \omega_r \end{bmatrix}$$
(1)

 $Fig. 1 \quad An \ illustration \ of \ knee \ joint \ system$

机械运动方程

$$J\frac{\mathrm{d}\omega_r}{\mathrm{d}t} = T_e - T_L - B\omega_r \tag{2}$$

电磁转矩方程

$$T_e = 1.5 P_n \psi_f i_q \tag{3}$$

式中,L为等效 d_q 轴产生的电感; i_q 为q轴上的电流; T_L 为折算到电机轴上的总负载转矩;R为定子相电 阻; ω_r 为转子的机械角速度;B为黏滞摩擦系数; ψ_f 为转子上的磁势; T_e 为电机轴输出转矩;J为折算到 电机轴上的总转动惯量; P_a 为极对个数.

1.2 膝关节伺服系统状态空间模型

膝关节伺服系统采用三闭环控制,其中位置 环选用模糊滑模控制器,速度环简化为PI控制, 电流环简化为P控制.由于模糊滑模控制对系统 参数精度要求低,故将机械部分假设成刚性体,电 气部分处于理想状态,可得速度环的传递函 数为^[9]:

$$G_{(s)s} = K/(1 + \tau_m s) \tag{4}$$

式中, τ_m = L/R 是速度环时间常数, K 是速度环增益. 将减速器考虑成积分环节1/(*is*), *i* 为减速比, 可得膝关节伺服系统开环传递函数为^[10]:

$$G_{(s)} = \frac{K}{1 + \tau_m s} \frac{1}{is} = \frac{K}{i(1 + \tau_m s)s}$$
(5)

可得下肢助力外骨骼膝关节伺服系统结构图如图 2所示.其中,θ为实际位置并作为反馈量,θ_{ref}为指

图 2 下肢助力外骨骼膝关节位置伺服系统结构简图

令位置,位置控制器的输出量 ω_{ref} 是被控对象的输入量,设 $u = \omega_{ref}$,系统的状态向量为 $X = [x_1 \quad x_2]$, 其中 $x_1 = \theta, x_2 = \dot{\theta}$,则系统状态空间方程为^[11-13]:

$$\begin{cases} \dot{x}_{1} = x_{2} \\ \dot{x}_{2} = f(x) + g(x)u \end{cases}$$
(6)

式中, $f(x) = -1/\tau_m x_2$; $g(x) = K/i\tau_m$ 考虑系统经常受到不确定因素的影响,为提高状态空间方程精度, 需增加不确定项:

$$\begin{cases} \dot{x}_1 = \dot{x}_2 \\ \dot{x}_2 = f(x) + \Delta f + [g(x) + \Delta g]u \end{cases}$$
(7)

式中 Δf , Δg 为添加的不确定部分, 假使系统满足条件

$$|\Delta f| \leq F \qquad \frac{1}{\beta} \leq \frac{g + \Delta g}{g} \leq \beta \tag{8}$$

式中, β≥1且为常数,F为标量值.

2 模糊自适应滑模控制器设计

2.1 滑模控制器设计

系统位置跟踪误差向量为:

$$E = X_d - X$$

 $= [x_{1d} - x_1 \ x_{2d} - x_2]^T$
 $= [e \ \dot{e}]^T$,
式中, $X_d = [x_{1d} \ x_{2d}]^T$, $x_{1d} = \theta_{ref}$, $x_{2d} = \dot{\theta}_{ref}$.可得:

 $\ddot{e} = \dot{x}_{2d} - \dot{x}_2 = f(x) + \Delta f + [g(x) + \Delta g]u - \ddot{\theta}$ (9)

设计带积分滑模面:

$$s = \dot{e} + k_3 e + k_4 \int_0^t e dt$$
 (10)

式中,k₃,k₄为大于零的常数.可得:

$$\dot{s} = \ddot{e} + k_3 \dot{e} + k_4 e = k_3 \dot{e} + k_4 e + f + \Delta f + \Delta f$$

$$(g + \Delta g)u - \ddot{\theta} \tag{11}$$

滑模面选用一种快速终端滑模型趋近率:

$$\dot{s} = -k_1 |s|^{\alpha} \operatorname{sgn}(s) - k_2 s$$
 (12)

式中, k_1 , k_2 为正常数, $\alpha \in (0, 1)$.由于现实系统存在 空间和时间上的滞后,因此假设一种等效的平均滑 模位置控制器 u_{equ} (不确定性为0),根据式(9)、式 (10)可得:

1

$$\dot{s} = -k_1 |s|^{\alpha} \operatorname{sgn}(s) - k_2 s = k_3 \dot{e} + k_4 e + f + g u_{equ} - \theta$$
(13)

$$u_{equ} = -\frac{1}{g} \left[k_1 | s |^{\alpha} \operatorname{sgn}(s) - k_2 s + f + k_3 \dot{e} + k_4 e - \ddot{\theta} \right]$$
(14)

$$u_q = -K \operatorname{sgn}\left(s\right)/g \tag{15}$$

式中,K > 0.可得总控制器为:

$$u = u_{equ} + u_q = -\frac{k_1 |s|^{\alpha} \operatorname{sgn}(s) - k_2 s + f + k_3 \dot{e} + k_4 e - \ddot{\theta} + K \operatorname{sgn}(s)/g}{g}$$

$$K = \beta [F + \xi + (\beta - 1)gu_{equ}]$$
(17)
式中, ε > 0. 取李雅普诺夫函数为V = 0.5s². 则有・

$$\dot{V} = s\dot{s} = s[k_3\dot{e} + k_4e + f + \Delta f + (g + \Delta g)u - \ddot{\theta}]$$
$$= s[k_3\dot{e} + k_4e + f + \Delta f + (g + \Delta g)u_{equ} - (g + \Delta g)K \operatorname{sgn}(s)/g - \ddot{\theta}]$$
(18)

由式(11)可知: $k_3 \dot{e} + k_4 e = -k_1 |s|^{\alpha} \operatorname{sgn}(s) - k_2 s - f - g u_{equ} + \ddot{\theta}$ (19)

将式(19)带入式(18)可知:

$$\begin{split} \dot{V} &= s \left[-k_{1} |s|^{\alpha} \operatorname{sgn}(s) - k_{2}s + \Delta g u_{equ} + \Delta f - \frac{g + \Delta g}{g} K \operatorname{sgn}(s) \right] = -k_{1} |s|^{\alpha + 1} - k_{2}s^{2} + \\ \Delta g u_{equ}s + \Delta f s - \frac{g + \Delta g}{g} K |s| \\ \dot{V} &\leq \Delta g u_{equ}s + \Delta f s - \frac{g + \Delta g}{g} K |s| , \\ \dot{V} &\leq |\Delta g| |u_{equ}| |s| + F |s| - \frac{1}{\beta} K |s| . \end{split}$$

$$(20)$$

带入K,可得:

$$\begin{split} \dot{V} &\leq |\Delta g| |u_{equ}||s| + F|s| - \frac{1}{\beta} \beta \left[F + \xi + (\beta - 1)gu_{equ}\right]|s|, \\ \dot{V} &\leq |\Delta g| |u_{equ}||s| - \xi|s| - (\beta - 1)gu_{equ}|s|, \\ \dot{V} &\leq -\xi|s| < 0. \end{split}$$
(21)

根据李雅普诺夫稳定性理论判据可知,系统能够在全局意义下趋近渐进稳定^[14,15].

2.2 趋近率系数与滑模运动特性关系分析 将式(12)两边同时乘上 $e^{k_{2}t}$,可得: $\frac{d(e^{k_{2}t}s)}{dt} = -k_{1}e^{(1-\alpha)k_{2}t}|e^{k_{2}t}s|^{\alpha}sgn(s)$ (22)

对式(22)两边积分,可得式(12)的解:

$$s(t) = \begin{cases} \operatorname{sgn}(s(0)) e^{-k_{2}t} \left[|s(0)|^{1-\alpha} - \frac{k_{1}}{k_{2}} e^{(1-\alpha)k_{2}t} + \frac{k_{1}}{k_{2}} \right]^{\frac{1-\alpha}{1-\alpha}} \\ t < \frac{\ln\left(\frac{k_{1}}{k_{2}}|s(0)|^{1-\alpha} + 1\right)}{k_{2}(1-\alpha)}, s(0) \neq 0 \\ 0, t \ge \frac{\ln\left(\frac{k_{1}}{k_{2}}|s(0)|^{1-\alpha} + 1\right)}{k_{2}(1-\alpha)} \\ 0, t \ge 0, s(0) = 0 \end{cases}$$
(23)

其中,s(0)是s(t)的t = 0时的初始值.由式(23)可 以得出,s(t)能够在有限的时间T内收敛到0,并且 调节时间T满足下式

$$T(s(0)) = \frac{\ln\left(\frac{k_1}{k_2}|s(0)|^{1-\alpha} + 1\right)}{k_2(1-\alpha)}$$
(24)

式中,当 $k_2 = 0$ 时,式(12)将变为传统幂次趋近率: $\dot{s} = -k_1 |s|^{\alpha} \operatorname{sgn}(s)$ (25)

对式(25)两边积分,可得:

$$s(t) = \begin{cases} \operatorname{sgn}(s(0)) \left[k_{1}(1-\alpha) + |s(0)|^{1-\alpha} \right]^{1-\alpha} \\ t < \frac{|s(0)|^{1-\alpha}}{k_{1}(1-\alpha)}, s(0) \neq 0 \\ 0, t \ge \frac{|s(0)|^{1-\alpha}}{k_{1}(1-\alpha)} \\ 0, t \ge 0, s(0) = 0 \end{cases}$$
(26)

1

由式(26)可得:

$$T(s(0)) = \frac{|s(0)|^{1-\alpha}}{k_1(1-\alpha)}$$
(27)

比较式(24)和式(27),可得:

$$\frac{\ln\left(\frac{k_1}{k_2}|s(0)|^{1-\alpha}+1\right)}{k_2(1-\alpha)} < \frac{|s(0)|^{1-\alpha}}{k_1(1-\alpha)}$$
(28)

可知式(12)中的" $-k_2s$ "项具有加速收敛的作用.结 合传统幂次趋近率特性,可知当远离滑模面时, k_1, k_2 均应取较大值;当接近切换面时,为抑制抖 振, k_1, k_2 应取相对较小值,整个过程中应保证 $k_1 < k_2$,设 $k_2 = m \cdot k_1$,其中m > 1.

2.3 模糊自适应滑模控制器设计

根据上述趋近率系数与滑模运动特性关系,将 模糊控制器设计成单输入双输出结构形式.即:运 用模糊规则,根据滑模函数s的值,自适应调整k₁ 和*k*₂的值.将*s*的值归一化到区间[-1,1]上,并将*s* 分为正大、正中、正小、几为零、负小、负中、负大等 7种情况,模糊子集为{NB,NM,NS,ZO,PS,PM, PB};将系数*k*₁和*k*₂的值归一化到区间[0,1]上,分 为几为零、正小、正中、正大等4种情况,模糊子集 为{ZO,PS,PM,PB};隶属度函数均选用三角函数. 根据上述滑模动态特性与趋近率系数之间的关系 分析结果,制定14条模糊规则,如表1所示.

表1	模糊控制器规则表

Table 1 Rule table of fuzzy controller			
S	k_1	k_2	
NB	PM	PB	
NM	PS	PB	
NS	PS	PM	
ZO	ZO	ZO	
PS	PS	PM	
PM	PS	PB	
PB	PM	PB	

采用重心法解模糊,可得:

$$uf(k) = \sum_{i=1}^{n} x_i \mu(i) / \sum_{i=1}^{n} \mu(i)$$
(29)

则被控对象的输入为

u =

$$-\frac{k_1 \left|s\right|^{\alpha} \operatorname{sgn}\left(s\right) - k_2 s + f + k_3 \dot{e} + k_4 e - \ddot{\theta} + K \operatorname{sgn}\left(s\right)/g}{g}$$

(30)

膝关节模糊自适应滑模控制系统机理如图3所示.

Fig.3 Control mechanism of fuzzy adaptive sliding mode controller

3 仿真结果及分析

为验证控制策略的正确性,运用 Matlab/ Simulink进行仿真实验,并与经典PID 和经典模糊 自适应滑模控制策略(即:滑模面选取 $s = e + c\dot{e}$,其 中c为常数,趋近率选取指数趋近率)相比较.仿真 模型具体参数如下:模糊滑模控制器参数为c =126, $m = 11, k_3 = 15, k_4 = 1200; 电机转子惯量 J =$ 2.627g·m²,等效电感 L = 50mL,永磁体 $\Psi_f =$ 0.056Wb,电机磁极对数 $P_n = 4$,相间电阻 R =1.38 Ω ,额定电流 $I_c = 21$ A,摩擦黏滞系数 B =1.26×10⁻⁴N·m·s;谐波减速器减速比1:120,速度 增益*K*=120,电流环参数为[P,I,D]=[0.715,0,0], 速度环参数为[P,I,D]=[5.2×10⁻⁵,0.2884,0],位 置环参数为[P,I,D]=[10000,0,0].仿真时间设置 为2*s*,求解器选择ode45.

3.1 常值负载干扰

为验证下肢助力外骨骼膝关节位置控制器抗 干扰能力,在1s时突加一个值为10N·m的阶跃信 号,如图5所示,经典PID和滑模控制器出现很大

位置偏移,很长时间才恢复到平衡位置,且初始位 置响应较慢;新型滑模控制器系统基本不受影响, 且初始位置响应较快.

3.2 位置跟踪误差

为验证控制系统的跟踪性能,选取r= 20sin(1.24t)做为系统的跟踪曲线,如图6所示,新 型滑模控制器的跟踪误差远小于经典滑模、PID控 制器的跟踪误差.

4 实验验证

实验系统选用 STM32F407ZGT6 作为位置控制 核心板,电机选用 J56ZWX02 无刷直流电机,额定 转速 3058r/min~3258r/min,额定扭矩 1.5N·m,谐波 减速器减速比 1:120,电流环为 P控制,采样频率 20kHz,速度环为 PI控制,执行频率 10kHz,位置环 依次选用经典 PID 控制器、经典滑模和新型滑模控 制器,执行频率 1kHz.系统输入选用正弦信号 r =20sin(1.24t),修正参数如下: $c = 126, m = 11, k_3 =$ 15, $k_4 = 1200.$ 角度初值为 0.08,自变量 s 的量化因 子为 0.3,变量 s 和 s 的输出量化因子为 6.3 × 10⁻⁷和 3 × 10⁻⁷.实验结果如图 7 所示,与经典滑模和 PID 控制策略相比,新型滑模控制策略的毛刺和误差峰 值明显减小.

Fig.7 Comparison of tracking error with experimental control

5 结论

针对下肢助力外骨骼膝关节位置伺服系统,设 计了一种模糊自适应滑模控制策略.仿真及实验结 果均表明,该控制策略与经典滑模、PID控制策略 相比,跟踪误差更小、响应速度更快、鲁棒性更强, 该控制策略完全能够满足下肢助力外骨骼膝关节 位置环主从伺服跟踪工作要求.

参考文献

- 胡飞,许德章,王毓.基于模糊 PID 滑模控制的外骨骼 控制系统设计.安徽工程大学学报,2017,32(4):56~61 (Hu F, Xu D Z, Wang Y. Design of exoskeleton control system based on fuzzy PID sliding mode control. *Journal* of Anhui University of Engineering, 2017, 32(4):56~61 (in Chinese))
- 2 宋胜利,陈文浩,张兴龙,等.快速二阶终端滑模控制及 其在下肢外骨骼的应用.控制与决策,2019,34(1): 162~166(Song S L, Chen W H, Zhang X L, et al. Fast second-order terminal sliding mode control and its application in lower limb exoskeleton. *Control and Decision*, 2019,34(1):162~166(in Chinese))
- 3 熊少锋,王卫红,王森.带攻击角度约束的非奇异快速 终端滑模制导律.控制理论与应用,2014,31(3):269~ 278 (Xiong S F, Wang W H, Wang S. Non-singular fast terminal sliding mode guidance law with attack angle constraint. *Control Theory and Applications*, 2014, 31 (3): 269~278 (in Chinese))
- 4 Utkin V I, Poznyak A S. Adaptive sliding mode control with application to super-twist algorithm: Equivalent control method. *Automatica*, 2013, 49(1): 39~47
- 5 Elmokadem T, Zribi M, Youcef-Toumi K. Trajectory tracking sliding mode control of underactuated AUVs. Nonlinear Dynamics, 2016, 84(2): 1079~1091
- 6 李杨,管小荣,徐诚.基于人体步态的下肢外骨骼动力 学仿真研究.南京理工大学学报(自然科学版),2015, 39(3):353~57(Li Y,Guan X R,Xu C. Simulation of lower limb exoskeleton dynamics based on human gait. *Journal of Nanjing University of Science and Technology(Natural Science Edition)*,2015,39(3):353~357 (in Chinese))
- 7 刘金琨.先进PID 控制 MATLAB 仿真.北京:电子工业 出版社,2004(Liu J K.Advanced PID control MATLAB simulation.Beijing:Publishing House of Electronics Industry, 2004(in Chinese))
- 8 诸静.模糊控制理论与系统原理.北京:机械工业出版 社,2005(Zhu J.Fuzzy control theory and system principle. Beijing: China Machinery Industry Press, 2005 (in Chinese))
- 9 朱蒙,管小荣,李杨,等.偏瘫下肢外骨骼结构设计与仿 真分析.兵器装备工程学报,2019,40(11):160~165
 (Zhu M, Guan X R, Li Y, et al. Design and simulation

analysis of exoskeleton structure of lower limbs in hemiplegia. Ordnance Equipment Engineering Journal, 2019, 40(11): 160~165 (in Chinese))

- 10 王险峰,李建平,王辉. 基于ZMP的仿人机器人跑步运动模式.计算机研究与发展,2013,50(10):2206~2211 (Wang X F, Li J P, Wang H. Running motion mode of humanoid robot based on ZMP. *Computer Research and Development*,2013,50(10): 2206~2211 (in Chinese))
- 11 牛建凯.外骨骼机器人助力控制技术研究[硕士学位论 文].北京:北京理工大学,2014(Niu J K. Research on the control technology of exoskeleton robot[Master Thesis]. Beijing: Beijing Institute of Technology, 2014(in Chinese))
- 12 刘宁宁.外骨骼机器人的人-机系统平衡稳定性研究 [硕士学位论文].北京:北京理工大学,2015(Liu N N. Research on the balance and stability of human-machine system of exoskeleton robot[Master Thesis]. Beijing: Beijing Institute of Technology, 2015 (in Chinese))

- 13 宋遒志,王晓光,王鑫,等.多关节外骨骼助力机器人发展现状及关键技术分析.兵工学报,2016,37(1):172~185(Song Q Z, Wang X G, Wang X, et al. Development status and key technology analysis of multi-joint exoskeleton assisted robots. *Acta Armamentarii*, 2016, 37(1): 172~185(in Chinese))
- 14 王峰,吴志强,李亚杰,等.多物理场仿真开关磁阻电机 定子的径向电磁振动.动力学与控制学报,2020,18
 (4):61~69(Wang F, Wu Z Q, Li Y J, et al. Radial Vibration simulation of the stator in switched reluctance motor by multiphysics method. *Journal of Dynamics and Control*, 2020, 18(4):61~69 (in Chinese))
- 15 张程,金涛.永磁同步机变频调速系统 MATLAB 建模与 仿真.动力学与控制学报,2014,12(2):183~187 (Zhang C, Jin T. Research on modeling and simulation of PMSM variable frequency speed regulating system. Journal of Dynamics and Control, 2014, 12(2):183~187 (in Chinese))

DESIGN OF FUZZY SLIDING MODE POSITION CONTROLLER FOR EXOSKELETON KNEE JOINT WITH LOWER LIMBS

Li Pengjie Wang Xinrui Li Xiaoqi Xu Guoqiang Si Fang Zhang Yu Ye Dongyu[†] (No.208 Research Institute of China Ordnance Industries, Beijing 102202, China)

Abstract Aiming at characteristics of the lower limb assisted exoskeleton knee joint position servo systems, such as high servo accuracy, large impact torque and wide load range, a sliding mode control strategy of position servo system based on fuzzy rules is proposed. This strategy designs a new type of sliding mode surface with integral terms. The structure of the fuzzy adjustment part is of single input and double output. Fuzzy rules are used to adjust the new terminal sliding mode approach rate to suppress sliding mode chattering. Both experiments and simulations demonstrate that the control strategy has good stability and servo tracking performances, and strong robustness with respect to load disturbances.

Key words lower extremity exoskeleton, knee, servo system, adaptive sliding mode, position control

Received 28 August 2020, revised 6 November 2020.

[†] Corresponding author E-mail: 18201013816@163.com