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摘要 对作大范围运动功能梯度材料（functionally graded materials，FGM）厚板的刚柔耦合动力学问题进行

了研究，基于一阶剪切变形理论，从连续介质理论出发，计及了变形位移场中的二次耦合变形量，利用

Lagrange方法推导了 FGM厚板的刚柔耦合动力学方程，该方程适用于普通均质板和 FGM板的动力学分析 .
采用 20自由度矩形单元对变形场进行离散，对不同转速下的悬臂板进行动力学仿真，比较了本文建立的基

于一阶剪切理论的模型和基于经典薄板理论的模型，验证了本文模型的正确性以及经典薄板理论的一些不

足 .研究了不同功能梯度指数下，FGM厚板的横向变形、速度响应频率和固有频率 .结果表明，随着转速增

大，剪切项对结构动力学行为影响变大；考虑横向剪切项的情况下，计算结果更偏柔性 .
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引言

近年来，随着航天航空器、能源动力、汽车工

业、智能机器人等领域的蓬勃发展，力学与机械、材

料、电子、生物等多学科的交叉不断加深，FGM的

研究受到了更多重视 . FGM［1，2］作为一种新兴的材

料，其特殊的力学和物理性能使其在实际工程中有

着广泛的应用前景，因此，对FGM的研究具有重要

意义 . 自从 Kane［3，4］揭示了动力刚化现象以来，国

内外学者对梁、板结构的动力刚化问题进行了大量

的研究［5-9］. Yoo［10］采用几何约束法对作大范围运动

薄板的动力刚度项进行修正，采用假设模态法对变

形场进行离散 .赵飞云、洪嘉振等［11］基于连续介质

力学理论，考虑了变形二次项，推导了高速旋转矩

形柔性薄板的动力学方程 .吴根勇、和兴锁等［12］基

于经典薄板理论建立了大范围运动层合板的动力

学方程，计入了传统建模方法忽略的二次耦合变形

量，研究了铺层数与外侧角点变形的关系 .黎亮、章

定国［13，14］研究了大范围转动悬臂功能梯度矩形薄

板的动力学问题，仿真了计及二次耦合变形量的功

能梯度薄板作旋转的动力学行为 . 以上文献都是

基于经典薄板理论进行研究，经典薄板理论是

Kirchhoff于 1850年发表的第一个完善的板弯曲理

论 . 经典薄板理论要求板的厚度与边长之比处于

薄板范围内 . 对于工程结构中大量使用的薄板问

题，经典薄板理论能够给出满意精度的解 . 然而，

对于中厚板，经典薄板理论的解不仅精度不高，甚

至还会出现错误的结果 .因此，国内外学者对中厚

板建模理论［15］进行了研究 . Sudhagar等［16］基于一阶

剪切变形理论研究了一种复合材料板的受迫振动

响应，对不同边界条件下复合材料板自由振动模态

进行比较分析 .李坦等［17］基于一阶剪切变形理论，

利用余能原理，建立了一种高阶杂交应力六节点三

角形Mindlin板单元，并且对四边简支中厚板的弯

曲和振动进行数值仿真分析 . Zhang等［18］研究了由

碳纳米管增强的 FGM三角形板的自由振动特性，

考虑了板的横向剪切变形影响 . Vu等［19］基于无网

格方法分析了功能梯度薄板和中厚板的静态弯曲

和自由振动问题 .陈丽华等［20］基于Mindlin板理论

对不同裂纹参数的悬臂板固有频率和模态进行了

研究 .现有文献大都是研究中厚板静力学问题，对

作大范围运动的FGM厚板动力学研究比较少见 .
2019⁃05⁃31收到第1稿，2019⁃08⁃31收到修改稿 .
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1 柔性厚板运动学分析

作大范围旋转的功能梯度厚板如图 1所示，坐

标系 O - XYZ为惯性坐标系，o - xyz为连体坐标

系，三个方向的单位矢量分别为 a1、a2、a3. 板的长

度为 a，宽度为 b，厚度为 h，密度 ρ (z)，弹性模量为

E (z)，泊松比为 μ.变形前板中面上一点 P0（在连体

坐标系下坐标为(x，y，z)）变形后至P点 .

根据一阶剪切变形理论和 Von - Karman原

理［15］，厚板上任意一点的变形位移和应变为：
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u1 = w1
- -- -- -- -- -- ----- -- -- -- --
- 12 ∫ 0x ( ∂u3∂ξ )2 dξ +--zφx

u2 = w2
- -- -- -- -- -- ----- -- -- -- --
- 12 ∫ 0y ( ∂u3∂ξ )2 dξ +--zφy

u3 = u3

（1）
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ε11 = ∂w1∂x + z
∂φx
∂x

ε22 = ∂w2∂y + z
∂φy
∂y

γ12 ≈ ∂w1∂y +
∂w2
∂x + z ( )∂φx

∂y +
∂φy
∂x

γ13 = ∂u3∂x + φx
γ23 = ∂u3∂y + φy

（2）

厚板板内任意一点的变形位移矢量为 u，在连

体坐标系下个分量为 (u1，u2，u3).其中面内纵向拉

伸变形位移 u 1，u2可以用板中面 (z = 0)上的变形

表 示 . 式（1）中 w1 - 12 ∫ 0x ( ∂u3∂ξ )2 dξ 和 w2 -
1
2 ∫ 0y ( ∂u3∂ξ )2 dξ分别为板中面上 x和 y方向上的变

形，w1和w2分别为板中面内沿 x和 y方向的实际伸

长量，
1
2 ∫ 0x ( ∂u3∂ξ )2 dξ和 1

2 ∫ 0y ( ∂u3∂ξ )2 dξ为二次耦合

变形量 . 传统的零次近似模型忽略了二次耦合变

形量，即式（1）中单下划线项 . φ x、φy分别为柔性厚

板中面法线相对于 y轴和 x轴的转角，基于经典薄

板理论的变形场表达式中没有考虑横向剪切效应

影响，即式（1）中的双下划线项 .
本文所研究的FGM厚板由陶瓷和金属两种材

料介质组成，板的弹性模量 E ( z )和密度 ρ ( z )沿板

的厚度呈幂函数分布，表示为：
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E ( z ) = ( )Ec - Em ( )2z + h
2h

N

+ Em
ρ ( z ) = ( )ρc - ρm ( )2z + h

2h
N

+ ρm
（3）

其中，N (N ≥ 0)为功能梯度指数，h为板厚度 .下标

‘c’、‘m’分别代表陶瓷材料和金属材料 . 泊松比

μc = μm = μ.板的长度为a，宽度为 b，厚度为h.
P点在惯性基下的速度矢量可表示为：

VP = Vo + ωA × (ρ0 + u) + VPA （4）
上式中，Vo、ωA为连体坐标系相对于惯性坐标

系的速度、角速度矢量，ρ0为点 P0在连体坐标系中

位置矢量，u为 P0的变形矢量，VPA为 P点相对连体

坐标系的速度矢量 .各矢量在连体坐标系的分量形

式为：
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Vo = v1a1 + v2a2 + v3a3
ωA = ω1a1 + ω2a2 + ω3a3
ρ0 = xa1 + ya2 + za3
u = u1a1 + u2a2 + u3a3
VPA = u̇1a1 + u̇2a2 + u̇3a3

（5）

将式（5）中各分量形代入式（4），得到P点的速

度表达式为：

VP = [ v1 + u̇1 + ω2 (u3 + z) - ω3 (y + u2) ]a1
+[ v2 + u̇2 + ω3 (x + u1) - ω1 (u3 + z) ]a2
+[ v3 + u̇3 + ω1 (y + u2) - ω2 (x + u1) ]a3

（6）

图1 作大范围运动功能梯度厚板

Fig.1 A functionally graded plate undergoing large motion

图2 板沿厚度方向材料分布

Fig.2 Distribution of material along the direction of thickness
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系统的动能为：

T = 12 ∫V ρ (z)V T
PVPdV

= 12 ∭Ω ρ (z)[ ( )v21 + v22 + v23 + (u̇21 + u̇22 + u̇23)
+(u̇21 + u̇22 + u̇23) + (ω21 + ω22 ) (u3 +z )2
+(ω22 + ω23 ) ( x + u1 )2 + (ω21 + ω23 ) ( y + u2 )2
+(2v1 u̇1 + 2v2 u̇2 + 2v3 u̇3 )
+2 ( v2ω3 - v3ω2 ) ( x + u1 ) + 2 ( v3ω1 - v1ω3 ) ( y + u2 )
+2 ( v1ω2 - v2ω1 ) (u3 + z ) + 2ω2 (u3 + z ) u̇1
-2ω3 ( y + u2 )u̇1 + 2ω3 ( x + u1 )u̇2
-2ω1 (u3 + z ) u̇2 + 2ω1 ( y + u2 )u̇3
-2ω2 ( x + u1 )u̇3 - 2ω2ω3 ( y + u2 ) (u3 + z)
-2ω1ω3 ( x + u1 ) (u3 + z)
-2ω1ω3 ( x + u1 ) ( y + u2 ) ] dV

（7）
其中，ρ ( z ) = ( ρc - ρm )( 2z + h2h )N + ρm

在板问题的研究中通常采用σz = 0的假设，根

据三维弹性理论，板内任意一点的应力为：
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0 0 0 0 C55
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（8）

其中C11、C12、C22、C33、C44、C55为板的材料参数 .
C11 = E ( )z

1 - μ2，C12 =
μE ( )z
1 - μ2，C22 =

E ( )z
1 - μ2，

C33 = E ( )z
2 ( )1 + μ ，C44 = E ( )z

2 ( )1 + μ ，C55 = E ( )z
2 ( )1 + μ

系统的势能 U分为两部分：板面内的变形能

Um，板弯曲和剪切变形能Ub.
U = 12 ∭V

(σ11ε11 +σ22ε22 + τ12γ12 + τ23γ23 + τ13γ13 )dV

= 12 ∭V
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E ( )z
1- μ2 (ε

211 + 2με11ε21 + ε222 + 1- μ2 γ212

+ 1- μ2 γ223 + 1- μ2 γ213 )
dV

=Um +Ub

（9）
Um=12 ∬A { E1

1-μ2 [ (
∂w1
∂x )2+(

∂w2
∂y )2+2μ (

∂w1
∂x ) (

∂w2
∂y ) ]

+ E1
2 (1+μ ) (

∂w1
∂y +

∂w2
∂x )2} dA

（10）

Ub = E2
2 (1 - μ2 ) ∬A
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( ∂2φx∂x2 )
2 + ( ∂2φy∂y2 )

2

+2μ ( ∂φx∂x ) (
∂φy
∂y )

+ 1 - μ2 ( ∂φx∂y +
∂φy
∂x )2

dA

+ E1
4 ( )1 + μ ∬A éëêê

ù

û
úú( )∂u3

∂x + φx
2
+ ( )∂u3
∂y + φy

2
dA
（11）

式（11）中，

E1 = Ec - Em

N + 1 h + Emh （12）

E2 = (Ec - Em) h3 ( 1
4 ( )N + 1 - 1

( )N + 2 ( )N + 3 )
+ Emh3

12
（13）

2 柔性厚板变形场离散

本文采用 20自由度矩形单元对变形场进行离

散，矩形单元如图3所示：

每个矩形单元有 4个节点，每个节点有 5个自

由度，任意矩形 j单元的自由度定义如下：

[w1k w2k u3k φxk φyk w1l w2l u3l φxl φyl
w1m w2m u3m φxm φym w1n w2n u3n ]φxn φyn

矩形厚板的变形场离散与矩形薄板不同，厚板

要考虑到横向剪切变形，板中面法线相对于 y轴的

转角 φx和相对于 x轴的转角 φy表示为独立变量 .
中厚板的变形场离散过程表示如下：

图3 4节点矩形单元

Fig.3 Four-node rectangular element
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w1 ( x，y，t ) =∑
i = 1

4
ϕ1i ( x，y )q1i ( t ) = Φ1 ( x，y )q1 ( t )

w2 ( x，y，t ) =∑
i = 1

4
ϕ2i ( x，y )q2i ( t ) = Φ2 ( x，y )q2 ( t )

u3 ( x，y，t ) =∑
i = 1

4
ϕ3i ( x，y )q3i ( t ) = Φ3 ( x，y )q3 ( t )

φx ( x，y，t ) =∑
i = 1

4
ϕ4i ( x，y )q3i ( t ) = ϕ4 ( x，y )q3 ( t )

φy ( x，y，t ) =∑
i = 1

4
ϕ5i ( x，y )q3i ( t ) =ϕ5 ( x，y )q3 ( t )

（14）
式（14）中 ，ϕ1i ( x，y )、ϕ2i ( x，y )、ϕ3i ( x，y )、

ϕ4i ( x，y )、ϕ5i ( x，y )为单元内对应节点的形函数 .
q1 ( t ) ∈ RN1、q2 ( t ) ∈ RN2为相应节点面内纵向变形位

移列阵，q3 ( t ) ∈ RN3为相应节点横向变形和截面转

角组成的列阵 .u3和两个转角 φx、φy的形函数行阵

表示为：

ϕ3i = [ϕ3i 0 0 ]
ϕ4i = [ 0 ϕ4i 0 ]
ϕ5i = [ 0 0 ϕ5i ] （15）
q3i (t)表示为：

q3i (t) = [ u3i φxi φyi ]
T

（16）
为了方便表述，下文的表达式中将略去自

变量 x，y，t.
令Φ4 = zϕ4，Φ5 = zϕ5，将式（14）代入式（1），

得变量u1，u2，u3及其速度表达式：
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u1 = Φ1q1 - 12 qT3H1 ( x，y )q3 + Φ4q3

u2 = Φ2q2 - 12 qT3H2 ( x，y )q3 + Φ5q3

u3 = Φ3q3

（17）
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u̇1 = Φ1 q̇1 - qT3H1 ( x，y ) q̇3 + Φ4 q̇3
u̇2 = Φ2 q̇2 - qT3H2 ( x，y ) q̇3 + Φ5 q̇3
u̇3 = Φ3 q̇3

（18）

对于有限元法，在 j单元内，形函数的具体表达

式如下：

ϕ j1 = ϕ j2 = [ψk ψl ψm ψn ]

ψr = 14 (1 + ςrς) (1 + ηrη) (r = k，l，m，n)
ϕ j3 = ϕ j4 = ϕ j5 = [Nk Nl Nm Nn ]

N r = [Nr Nxr N yr ] (r = k，l，m，n) （19）
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Nr = 18 ( )1 + ςrς ( )1 + ηrη ( )2 + ςrς + ηrη - ς2 - η2

Nxr = - 18 dηr ( )1 + ςrς ( )1 + ηrη ( )1 - η2

Nyr = 18 cςr ( )1 + ςrς ( )1 + ηrη ( )1 - ς2
（20）

式（20）中，
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ς = x
c
，ςr = xrc

η = y
d
，ηr = yrd

(r = k，l，m，n) （21）

式（21）相应的偏导数为：
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∂
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∂
ς
1
c

∂
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∂
η
1
d
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∂2
∂x2 =

∂2
∂ς2

1
c2

∂2
∂y2 =

∂2
∂η2

1
d2

2 ∂2
∂x∂y =

∂2
∂ς∂η

2
cd

（22）

单元节点的变形位移列阵表示为：

q j1 = [w1k w1l w1m w1n ]
T

q j2 = [w2k w2l w2m w2n ]
T

q j3 = [ u3k φxk φyk u3l
φxl φyl u3m φxm

]φym u3n φxn φyn
T

（23）

单元耦合形函数表示如下：
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H1 ( x，y ) = 1c2 R
T
j3 ∫-1ς ϕT3，ς ϕ 3，ςdςRj3

+∑
i ∈ mP0

1
c2
RTi3 ∫-11 ϕT3，ς ϕ 3，ςdςRi3

H2 ( x，y ) = 1d2 R
T
j3 ∫-1η ϕT3，η ϕ 3，ηdηRj3

+∑
i ∈ nP0

1
d2
RTi3 ∫-11 ϕT3，η ϕ 3，ηdηRi3

（24）

式（24）中 Rj3和 Ri3为单元编号决定的定位矩

阵，c和 d分别为单元长度和宽度的二分之一，mP0
和 nP0分别表示这两条线段经过的单元的集合 .下
标中“，”表示对坐标求偏导 .
3 柔性厚板动力学方程

取广义坐标 q = [ qT1，qT2，qT3 ]T，将动能和势能代
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入第二类Lagrange方程

d
dt (

∂T
∂q̇ ) -

∂T
∂q +

∂U
∂q = 0

得到FGM厚板的刚柔耦合动力学方程为：
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式（25）中各个分块矩阵表达式为：

M11 = W11，M22 = W22，M33 = W33 - -- -- -- ----- -- -- --
+W44 + W55

- -- -- -- -- -- ----- -- -- -- -- --
M31 = M T13 = W41

- -- -- -- -- -- ----- -- -- -- -- --
M32 = M T23 = W52

G12 = -G T21 = -2ω3W12
G23 = -G T32 = -2ω1W23

G13 = -G T31 = 2 (ω2W13 - -- -- -----
-ω3W15)

G33 = 2ω2 ( )W43 - W34 + 2ω2 ( )W54 - W45

+2ω2 ( )W35 - W53
K11 = K f 11 - (ω22 + ω23 )W11
K12 = K f 12 + (ω1ω2 - ω̇3 )W12

K13 = (ω1ω3 + ω̇2 )W13 - -- -- -- -- -- -- -- -- -- -- -- ----- -- -- -- -- -- -- -- -- -- -- --
-( )ω22 + ω23 W14 + (ω1ω2 - ω̇3 )W15

K21 = K f 21 + (ω1ω2 + ω̇3 )W21
K22 = K f22 - (ω21 + ω23 )W22
K23 = (ω2ω3 - ω̇1 )W23 +

- -- -- -- -- -- -- -- -- -- -- -- -- ----- -- -- -- -- -- -- -- -- -- --
( )ω̇3 + ω1ω2 W24 - ( )ω21 + ω23 W25

K31 =(ω1ω3 - ω̇2 )W31 -- -- -- -- -- -- -- -- -- -- -- -- ----- -- -- -- -- -- -- -- -- --
( )ω22 +ω23 W41 + ( )ω̇3 +ω1ω2 W51

K32 =(ω2ω3 + ω̇1 )W32 +- -- -- -- -- -- -- -- -- -- -- -- ----- -- -- -- -- -- -- -- -- --
( )ω1ω2 - ω̇3 W42 - ( )ω21 +ω23 W52

K33 = K f33 - (ω21 + ω22 )W33
-
- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- ----- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
( )ω22 + ω23 W44 - (ω21 + ω23 )W55 - ω̇2W34 + ω̇1W35

- -- -- -- -- -- -- -- -- -- -- -- -- -- -- ----- -- -- -- -- -- -- -- -- -- -- -- -- -- --

+( )2ω1ω3 + ω̇2 W43 + ( )2ω1ω2 - ω̇3 W45

+( )2ω2ω3 - ω̇1 W54

- -- -- -- -- -- -- -- -- -- -- -- ----- -- -- -- -- -- -- -- -- -- --- -- -- -- -- -- -- -- -- -- -- -- ----- -- -- -- -- -- -- -- -- -- --
+(ω22 + ω23 )D11 + (ω21 + ω23 )D22

- -- -- -- -- -- -- -- -- -- -- -- -- -- ----- -- -- -- -- -- -- -- -- -- -- -- --- -- -- -- -- -- -- -- -- -- -- -- -- -- ----- -- -- -- -- -- -- -- -- -- -- -- --

-(ω1ω2 + ω̇3 )D12 - (ω1ω2 - ω̇3 )D21
-a01C1 - a02C2

Q1 = (ω22 + ω23 )ST11 - (ω1ω2 - ω̇3 )ST21 - a01Y T1
Q2 = (ω21 + ω23 )ST22 - (ω1ω2 + ω̇3 )ST12 - a02Y T2

Q3 =-(ω1ω3 - ω̇2 )ST13 +- -- -- -- -- -- -- -- -- -- -- ----- -- -- -- -- -- -- -- -- --
( )ω22 +ω23 ST14 - ( )ω1ω2 + ω̇3 ST15

- (ω2ω3 + ω̇1 )ST23 -- -- -- -- -- -- -- -- -- -- -- ----- -- -- -- -- -- -- -- -- --
(ω1ω2 - ω̇3 )ST24 + ( )ω21 +ω23 ST25

-a03Y T3 -- -- -- -- -- -- -- -- -- -- -- -- ----- -- -- -- -- -- -- -- -- -- --
a01Y T4 - a02Y T5 - ω̇2ST34 -ω2ω3ST35

（26）
K33表达式中 a01、a02、a03为基点加速度在浮动

基下的分量：

a01 = v̇1 + (ω2 v3 - ω3 v2)
a02 = v̇2 + (ω3 v1 - ω1 v3)
a03 = v̇3 + (ω1 v2 - ω2 v1) （27）
式（26）中各常数阵为：

W ij = ∭
V
ρ (z)ϕT

iϕ j dV
(i = 1，2，3，4，5 j = 1，2，3，4，5)

C i = ∭
V
ρ (z) ⋅ H idV (i = 1，2)

D1i = ∭
V
ρ (z) ⋅ x ⋅ H i dV (i = 1，2)

D2i = ∭
V
ρ (z) ⋅ y ⋅ H idV (i = 1，2)

S1i = ∭
V
ρ (z) ⋅ x ⋅ ϕ i dV (i = 1，2，3，4，5)

S2i = ∭
V
ρ (z) ⋅ y ⋅ ϕ i dV (i = 1，2，3，4，5)

S3i = ∭
V
ρ (z) ⋅ z ⋅ ϕ i dV (i = 1，2，3，4，5)

Y i = ∭
V
ρ (z) ⋅ ϕ i dV (i = 1，2，3，4，5)

K f 11 = ∭
V

E ( )z
1 - μ2 ( ϕ

T1，xϕ1，x + 1 - μ2 ϕT1，yϕ1，y )dV

K f 12 = K T
f21 = ∭

V

E ( )z
1 - μ2 ( μϕ

T1，xϕ2，y

+ 1 - μ2 ϕT1，yϕ2，x )dV
K f 22 = ∭

V

E ( )z
1 - μ2 ( ϕ

T2，yϕ2，y + 1 - μ2 ϕT2，xϕ2，x )dV
K f 33 = Kf133 + Kf233

K f133 = ∭V

E ( )z
12(1 - μ2 ) [ ϕ

T4，xϕ4，x + ϕT5，yϕ5，y

+μ (ϕT4，xϕ5，y + ϕT5，yϕ4，x)
+ 1 - μ2 (ϕT4，yϕ4，y + ϕT5，xϕ5，x

)+ϕT4，yϕ5，x + ϕT5，xϕ4，y ] dV
K f233 = ∭V

E ( )z
2 ( )1 + μ [ϕT3，xϕ3，x + ϕT3，yϕ3，y

+ϕT4ϕ4 + ϕT5ϕ5 + ϕT3，xϕ

+ ]ϕT4ϕ3，x + ϕT3，yϕ5 + ϕT5ϕ3，y dV
（28）

方程（25）可以模拟 FGM柔性厚板的动力学问
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题 .式（26）中K33项表达式中双下划线项为考虑二

次耦合变形量而推导出的附加动力刚度项，若忽略

这些项，则动力学方程退化为传统的零次模型 .式
（26）中单下划线项为考虑横向剪切变形效应推导

出的项，若忽略剪切变形项，则动力学方程退化为

传统经典薄板理论模型 .式（28）中的 ρ（z）、E（z）为

FGM厚板的材料分布函数 .
4 数值仿真

4.1 作定轴转动矩形板动力刚化研究

仿真作大范围运动悬臂功能梯度板的动力学

行为，采用上文所述离散方法，将板离散为 12×12
个单元，中心刚体与板的一边固连，中心刚体以角

速度ω绕 y轴旋转，中心刚体半径R=0，角速度ω1=
ω3=0，ω2=ω，角加速度 ω̇1 = ω̇3 = 0，ω̇2 = ω̇.

给定的角速度规律为：

ω = {ΩT t - Ω
2π sin ( )2π

T
t 0 ≤ t ≤ T

Ω t > T
（29）

式（29）中，T=30s.

只考虑板沿厚度方向上的横向振动，系统的动

力学方程可以简化为：

M33 q̈3 + G33 q̇3 + K33q3 = Q3 （30）
上式中各矩阵表达式已在上文中给出 .
算例 1.普通均质材料板参数：a=1.8828m，

b=1.2192m，h=0.00254m，E=70GPa，ρ =2000kg/m3，

μ=0.3.
算 例 2. FGM 板 的 材 料 参 数 ：a=1.8828m，

b=1.2192m， h=0.1m， Ec=151GPa， Em=70GPa，
ρc=3000kg/m3，ρm=2707kg/m3，μ=0.3.

算例1数值仿真：

图 5-8 为 Ω =0.2Hz、Ω =0.275Hz、Ω =10Hz 和
Ω=20Hz时使用不同方法获得的模型外侧角点横

向变形和横向变形速度 .三种方法都计及了变形二

次项，其中假设模态法和有限元法（finite element
method，FEM）基于经典薄板理论，本文方法是基于

一阶剪切变形理论，用 20自由度矩形单元离散变

形场，采用Newmark法数值求解，数值阻尼的存在

使匀速转动阶段的横向变形逐渐减小 .从图 5和图

6可以看出，各方法的仿真结果基本一致，这也验

证了本文方法的正确性 . 从图 6（b）匀速转动阶段

的局部放大图可以看出，Ω=0.275Hz时基于经典薄

板理论的有限元方法振幅最小，基于一阶剪切变形

理论的本文方法振幅偏大，但是这个差异是很小

的，都能满足实际工程要求 .
从图 6（b）、图 7（b）和图 8（b）外侧角点变形放

大图可以看出，转速恒定时，基于本文厚板理论模

型得到的振幅和响应周期都比基于经典薄板理论

的有限元法偏大一点，而且随着Ω的增大，这种差

异越来越明显 .这说明了经典薄板理论模型的计算

结果使结构更偏刚性，在中心刚体转速提高时，计

入了横向剪切变形效应的本文模型在描述大范围

图4 绕中心刚体旋转的功能梯度板

Fig.4 A rotating cantilever functionally graded plate
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Fig.5 Numerical simulation results of homogeneous
material plates for the case of Ω = 0.2Hz

38



第 4期 杨兴等：基于一阶剪切板理论的FGM板刚柔耦合动力学建模与仿真

运动板的动力学行为时更加准确 .
算例2仿真：

对 h = 0.1m，Ω = 50Hz的 FGM厚板进行数值

仿真 .从图 9（a）可以看出，随着N的增大，FGM厚

板的外侧角点最大变形逐渐增大，匀速转动阶段的

振幅也逐渐增大，这说明板的柔性是随着功能梯度

指数N的增大而变大的 .图 9（c）为匀速转动阶段外

侧角点横向变形速度放大图，由图可得功能梯度指

数N越大，结构的速度响应周期也越长 .
4.2 作定轴转动功能梯度矩形板固有频率研究

本节基于厚板理论和经典薄板理论对作匀速

转动矩形板的横向弯曲固有频率进行研究 .在只考

虑板横向弯曲的情况下，得到基于厚板理论的

FGM板振动方程为：

M33 q̈3 + [Ω2 (RC1 + D11) - Ω2 (W33 + W44 +
W55) + K f133 + K f233 ]q3 = 0 （31）

对式（31）进行无量纲化处理，引入以下无量纲

变量：

κ = Ec

Em

，χ = ρc
ρm

，δ = a
b
，τ = h

a
，σ = R

a
，

γ = Ω ( 12ρmha4 ( )1 - μ2
Em

)
1/2

，

ϖ = ω ( )12ρmha4 ( )1- μ2
Em

1/2

（32）
将式（32）代入式（31）可得无量纲形式振动

方程：
-M 33 q̈3 + [ γ2 ( )σ-C 1 + -D 11 - -W 33 - -W 44 - -W 55

+ ]ζ1
-K f133 + ζ2-K f233 q3 = 0

（33）
式（33）中 ζ1和 ζ2是与功能梯度指数N有关的

FGM沿板厚度方向的分布系数，分别表示为：
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Fig.6 Numerical simulation results of homogeneous material plates
for the case of Ω = 0.75Hz

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
-2.0x10

-2

0.0

2.0x10
-2

4.0x10
-2

6.0x10
-2

8.0x10
-2

1.0x10
-1

1.2x10
-1

1.4x10
-1

1.6x10
-1

1.8x10
-1

 

 

la
te

ra
l 

d
ef

le
ct

io
n
/m

time/s

 the method based on thick plate theory

 finite element method based on 

          thin plate theory

(a)

 
（a）外侧角点横向变形

（a）Lateral deflection of the plate’s corner

（b）匀速转动阶段放大图

（b）Enlarged view of uniform rotation stage
图7 Ω = 10Hz时均质材料板数值仿真结果

Fig.7 Numerical simulation results of homogeneous material plates
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ζ1 = (κ - 1) 3( )N 2 + N + 2
( )N + χ ( )N + 2 ( )N + 3 + N + 1

N + χ
ζ2 = κ - Nχ + N （34）
将FGM板退化为普通均质板，表 1和表 2分别

是σ = 0和σ = 1时悬臂板的前五阶无量纲固有频

率（N = 0，δ = 1，τ = 0.01）.文献［21］基于经典薄板

理论，采用 5 × 7阶的假设模态法 .基于经典薄板理

论的有限元方法和基于本文建模理论的方法离散

单元数均为 12 × 12，其中厚板理论采用第三章中

所给的单元 .由表 1和表 2可知，在 γ相同的情况

下，悬臂板的各阶无量纲固有频率中，基于经典薄

板理论的假设模态法计算结果最大，这说明了假设

模态法比有限元方法偏刚性 . 基于本文厚板建模

理论的计算结果小于基于经典薄板理论的假设模

态法和有限元法，这是由于考虑了横向剪切变形的

影响，悬臂板的柔性更大 .比较σ = 0和σ = 1的各

阶无量纲固有频率可以发现，中心刚体半径的增

大，悬臂板的无量纲固有频率也会增大 .表 3是N
取不同值时得到的旋转功能梯度厚板的前五阶无

量纲固有频率，结果表明随着N的增加，功能梯度

厚板的无量纲固有频率是降低的，N的变化对高阶

频率影响较大 .
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图9 Ω = 50Hz时功能梯度厚板数值仿真结果

Fig.9 Numerical simulation results of functionally graded
thick plates for the case of Ω = 50Hz
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5 结论

本文基于一阶剪切变形理论，运用Lagrange方
程，建立了作大范围运动功能梯度厚板的刚柔耦合

动力学模型，建模过程中计及了传统建模方法忽略

的二次耦合变形量，考虑了经典薄板理论模型忽

略的横向剪切变形项，采用 20自由度矩形单元对

变形场进行离散 .对不同转速下的模型进行了数值

仿真，并与基于经典薄板理论的假设模态法和有限

元方法进行比较分析，验证了本文方法的正确性 .
仿真结果表明随着柔性板转速的增加，剪切项对悬

臂板的动力学行为影响变大，计入了剪切项的本文

方法在描述高速旋转板的力学特性时更加精确 .对
FGM柔性厚板进行数值仿真，仿真结果表明随着

功能梯度指数的增加，外侧角点的横向变形和响应

周期也随之增大，厚板的固有频率变小，柔性增大，

可以根据实际工程需要，调整功能梯度参数以改变

结构的力学性能 .
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表1 作定轴转动中心刚体-悬臂板的前五阶

无量纲固有频率

Table 1 Five lowest dimensionless natural frequencies of a
rotating cantilever plate ( )δ = 1,τ = 0.01,σ = 0

Dimension⁃
less angular
velocity

γ = 1

γ = 2

Frequency
order
1
2
3
4
5
1
2
3
4
5

FEM based
on thin plate
theory
3.498
8.511
21.468
27.153
31.049
3.575
8.815
21.789
27.176
31.302

Thick plate
theory
3.496
8.473
21.320
27.051
30.836
3.575
8.769
21.620
27.025
31.053

Reference
[21]
3.516
8.533
21.520
27.353
31.206
3.5963
8.5507
21.865
27.384
31.477

表2 作定轴转动中心刚体-悬臂板的前五阶

无量纲固有频率

Table 2 Five lowest dimensionless natural frequencies of a
rotating cantilever plate (δ = 1,τ = 0.01,σ = 1)

Dimension⁃
less angular
velocity

γ = 1

γ = 2

Frequency
order
1
2
3
4
5
1
2
3
4
5

FEM based
on thin plate
theory
3.715
8.598
21.645
27.192
31.186
4.359
8.854
22.481
27.342
31.839

Thick plate
theory
3.7124
8.5844
21.472
27.087
30.724
4.352
8.816
22.315
27.201
31.602

Reference
[21]
3.732
8.624
21.706
27.394
31.350
4.381
8.909
22.580
27.557
32.043

表3 作定轴转动中心刚体-悬臂板的前五阶

无量纲固有频率

Table 3 Five lowest dimensionless natural frequencies of a
rotating cantilever functionally graded thick plate

(γ = 10,δ = 1,τ = 0.1,σ = 0)
Frequency
order
1
2
3
4
5

N=1
6.156
11.028
32.378
38.299
47.013

N=2
6.002
10.708
31.432
37.183
45.582

N=3
5.873
10.340
30.487
36.086
44.152

N=4
5.741
10.141
29.542
34.976
42.723
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DYNAMIC MODELING AND SIMULATION OF FUNCTIONALLY
GRADED MATERIALS PLATES BASED ON FIRST ORDER

SHEAR PLATE THEORY *

Yang Xing1，2† Liu Renwei1 Hou Peng1 Zhang Dingguo2
（1.Shanghai Institute of Spacecraft Equipment，Shanghai 200240，China）

（2.School of Sciences，Nanjing University of Science and Technology，Nanjing 210094，China）
Abstract The rigid-flexible coupling dynamics of a rectangular functionally graded thick plate undergoing large overall
motion was investigated. Based on the first order shear deformation theory，both the transverse shear deformation and the
quadratic coupling deformation were taken into account. The rigid-flexible coupling dynamic equations of the functional⁃
ly graded plate were deduced by Lagrange equations. The finite element method was used to discretize the deformation
field with a rectangular element having 20 degrees of freedom based on the classical thin plate theory. The dynamic simu⁃
lations of the cantilever plate with different rotating speeds were carried out. The influences of function gradient index on
the transverse deformation，velocity response frequency and natural frequency of the functionally graded thick plate were
also discussed. The results showed that the impact of the shear deformation on structural dynamics becomes notable with
an increase in the rotating speed，and the structure is more flexible as the shear deformation is taken into account.
Key words first order shear deformation theory， functional graded material， finite element method， dynamic

stiffening
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