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Table 1  Five lowest dimensionless natural frequencies of a

rotating cantilever plate (8§ = 1,z = 0.01,0 = 0)

FEM based

Dimension-

Jews angalar Frequency | e Thick plate  Reference
velocity order theory theory [21]
1 3.498 3.496 3516
2 8.511 8.473 8.533
y=1 3 21.468 21.320 21.520
4 27.153 27.051 27.353
5 31.049 30.836 31.206
1 3.575 3.575 3.5963
2 8.815 8.769 8.5507
y=2 3 21.789 21.620 21.865
4 27.176 27.025 27.384
5 31.302 31.053 31.477

®2 MAEEHFEI R ORE-BEWABT RN
T EMEFIMZE
Table 2 Five lowest dimensionless natural frequencies of a

rotating cantilever plate (8§ = 1,z = 0.01,0 = 1)

Dimension- FEM based
Frequency Thick plate  Reference
less angular on thin plate
order theory [21]
velocity theory

1 3.715 3.7124 3.732
2 8.598 8.5844 8.624
y=1 3 21.645 21.472 21.706
4 27.192 27.087 27.394
5 31.186 30.724 31.350
1 4.359 4.352 4.381
2 8.854 8.816 8.909
y=2 3 22.481 22.315 22.580
4 27.342 27.201 27.557
5 31.839 31.602 32.043

®3 (EEMFER P ONE-2EIROBTEM
EENEFHE
Table 3 Five lowest dimensionless natural frequencies of a
rotating cantilever functionally graded thick plate

(y=108=1z=0.1,0=0)

h'ijz:cy N=1 N=2 N=3 N=4
I 6.156 6.002 5.873 5741
2 1028 10708 10340 10.141
3 32378 31432 30487 29.542
4 38299 37183 3608 34976
5 47013 45582 44152 42723
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DYNAMIC MODELING AND SIMULATION OF FUNCTIONALLY
GRADED MATERIALS PLATES BASED ON FIRST ORDER
SHEAR PLATE THEORY *

Yang Xing"* Liu Renwei' Hou Peng' Zhang Dingguo’
(1.Shanghai Institute of Spacecrafi Equipment , Shanghai 200240, China)
(2.School of Sciences , Nanjing University of Science and Technology , Nanjing 210094, China)

Abstract The rigid-flexible coupling dynamics of a rectangular functionally graded thick plate undergoing large overall
motion was investigated. Based on the first order shear deformation theory, both the transverse shear deformation and the
quadratic coupling deformation were taken into account. The rigid-flexible coupling dynamic equations of the functional-
ly graded plate were deduced by Lagrange equations. The finite element method was used to discretize the deformation
field with a rectangular element having 20 degrees of freedom based on the classical thin plate theory. The dynamic simu-
lations of the cantilever plate with different rotating speeds were carried out. The influences of function gradient index on
the transverse deformation, velocity response frequency and natural frequency of the functionally graded thick plate were
also discussed. The results showed that the impact of the shear deformation on structural dynamics becomes notable with

an increase in the rotating speed, and the structure is more flexible as the shear deformation is taken into account.

Key words first order shear deformation theory, functional graded material, finite element method, dynamic

stiffening
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