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Fig.3 Schematic diagram of traditional wheelset guidance

P4 ST e e R B

Fig.4 Diagram of independently rotating wheel steering

— AR A RN G )
v+ blﬁl —w,(r, + Ay))
Vv

F., = _fllgxll, = _fn[

(13)
V_b.l_ R 0_)‘1
For :_fllflef :_fn[ v z (r Y )]
(14)
V+ b, — w,(r, + Ay,
Fo==fiéa =—ful v 3( %2)
(15)
V_b.z_ R 0_)t 2
For==fuéor ==ful v C; r y )]
(16)

H1 T 1m0 R G 2 58 TR 0 i e 4 e 5% 0 )5
HAAE , YA X R ARSI, RN TS 458t 27 2k
HAe s, P EEHE AR, 7 A G B T s
(9)~(16) m] 1, G\ 1) R 15 4 8 PR A6 1o 05 9 ) 2 22
BOR TR A0 o, TSk A0 SRS A A R A 2 7

RO

MY\ A G — DA X RS — B 2 1 A Kk
HERERS y B, B 5 (a) , — 7 A I 42 58 1R B [
PR, e 3 IR 2 A2 R AT i 22 48 i 2k
TR AR 2R, R R B A S AL B A AR X M B,
ARG ) 85 7, I LR AT S RS A Ak ) i T ) K
IR 7 AR S N ) 0 8 T SR RS — A A
HE A EF RSk A 0 A ISk AR A ) 22 R
) 5 1 07, AR 52 D R ) 85 0 R RIVE T
i — (7 FR X R RN E oty s A X AE A m) BT
FERVE R R P AR - ARk A IR 92 3k £
A T A B ) 5 ), A EE T R D )RR () 05
1B R (A X [l B e

MG\ A G — L Fe X AE B — B 2] 7 A
I EERE Sk A o i), an i S (b) (A5 — 0 8 X 7= A 1a]
A R [ W T, R 7 A A R ) 51 S
A 30 BT BN ) T TR S A 2 i VK 5 3
A 0 s A ERR PR AT T ] 4 G ) e
7 AR T 4 T ) Sk 1) A B4R ) A5 e T il
DEEEXT ) A7 AR, 7 A 0 B A ] s T 0 R R A %)
PRIZ BB G
14 BEEERBERISFEVIE

SEPERR R A R X 6, B A A 4
FerpalE o — A AR WA ST, X
AGEL N AE—E R Ll LIE BRItz 80, 12
o F LB [F A SR A B0 b Tl 225 )
I3 H  KOMRRA NI, C A BIBHE , S 22 4
BRSBTS AR R AN TR 2 P A R A L, SE R
Hahxrh AT 2 S aE T A 1A

M = K(o = bu) + Cld, = dur) (17)

S RE e R A8 X 438 3 5

XHHERS

m(7,; + 1 b + VIR)=Fp = Fp = Ny, -

Nii = Frutyi = Frury = mgd,; = 0

(18)
LSO EEES S
. |74 . . ..
I} (am - 7)((151(:5 + (bwui) +1 - [wm +
0
d 1
VE (E)]_ b(FLu - F/m‘) - a’l/’u:i(FLyi + NLyi -

FR}'i - NRyi) - Min -
(19)
LSS



5 3 1

HTIDEsE A G 2R T I LIRS AT BT 1) PR RE XS HE IS 65

%Fgw
FXWL

<

gL
FXZL

ﬁuﬁﬂﬁ ﬁuﬂwi

>

FXZR FXWR

ngR ngR

(a) —(LEEXTHERS y

(a) The first wheelset moves y

%F
>
<

(b) —fifexi 4k o
(b) The first wheelset shook its heads ]

5 HEEEE 44T LR K
Fig.5 Schematic diagram of longitudinal coupling wheel guidance

mechanism

]3 d‘)‘u.\’i =k,
NRzi - Nin) - ML}‘i

— raF o = b, (Fry = Fpu +
- M,, =0
(20)
Ly = b = roF ey = b (Fr, +
Foo+ Np +No)-M,, - (21)
My, + 4(Cid,y + Ki)=0
m XS BT s AR X R SRR D, R
P S 1 A 5 VO A R 5 RO S PRt 2
BB, Foi WEAT R G 1 3 F, F o N2 A
BRI\ G T 5 F o F o R A A AR T 1) 5 )
Ny Ny 2T TR W) ST R ) 53 1 5N N R A
BRI W S TEm 53 S5 F,, O — R R )
L LA3 N ARS8 y 2 A R &, Ry e X R
15 b 2 AT SR Rl s R 1) (R BE 2 sy o W2

AR IR B B A% 5 M, o — R L T
M, My R 704 205 1 e 05 4 0 A y Bl ) 20

Ko witkRL e fext
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Table 1 Bogie parameter setting A BHJE A 10kNm - s/rad.
vehicle parameters
Distance between shafts 1800 mm
The wheel rolls round the transverse span 1493 mm
Wheel rolling circle diameter 300 mm
The architecture quality 1.432 t
Wheelset quality 0.595 t
A suspension transverse span 2 m TR TR
Longitudinal spacing between two rubber stacks 0.2 m Fig.8 Vehicle dynamics model
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ANALYSIS OF COUPLING WHEEL STEERING MECHANISM
AND COMPARATIVE STUDY OF STEERING PERFORMANCE *

Jin Xiaoliang" Qi Zhuang Liu Pengfei Wang Meiqi  Liu Yongqiang
(School of Mechanical Engineering , Shijiazhuang Tiedao University , Shijiazhuang 050043, China)

Abstract The steering performances of wheels with different coupling modes are obviously different. The dynamics
models of a bogie with traditional wheelset, independent rotating wheel, longitudinal coupling wheel and elastic damp-
ing coupling wheelset were established, respectively, and the guiding mechanism and the generation of longitudinal
creep forces were analyzed. The results showed that the traditional wheelset can produce longitudinal creep forces with
the same size and opposite direction and has the best guiding ability. Independent rotating wheels cannot generate longi-
tudinal creep forces, and the guidance can be fulfilled only by the wheel edge when the train passes through curved
lines. The longitudinal coupling wheel also can generate longitudinal creep forces with the same size and opposite direc-
tion, and its guiding ability is better than the independent rotating wheel. The generating mechanism of the longitudinal
creep forces produced by the elastic damping coupling wheelset is almost consistent with that of the traditional wheelset
and its guiding performance is slightly worse than the traditional wheelset, but better than the longitudinal coupling

wheel.

Key words traditional wheelset, independent rotating wheel, coupling wheelset, longitudinal creep force,

steering mechanism,  steering performance
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