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摘要　 本文对非同构系统的混沌状态同步问题进行了讨论，并对单变量单向及双向耦合和多变量耦合对各

自系统动力学行为产生的影响进行了对比分析．基于广义同步混沌化的驱动控制原理，利用经典的 Ｌｏｒｅｎｚ 系

统产生混沌信号去驱动永磁直流电机，使电机转速工作在混沌状态，并得到了同步控制器的解析表达式．最

后，进行系统数值仿真，验证了同步控制的有效性．

关键词　 非同构系统，　 广义同步混沌化，　 Ｌｏｒｅｎｚ 系统，　 永磁直流电机，　 同步控制器

ＤＯＩ：　 １０．６０５２ ／ １６７２⁃６５５３⁃２０２０⁃０１７

引言

混沌科学被誉为二十世纪物理学的第三次革

命，是上世纪九十年代以来科学界最引人注目的研

究热点之一．如今，混沌的概念和应用已经渗透到

了科学研究的诸多领域．在混沌研究的初期，人们

主要关注寻找各种新型混沌系统以及如何识别混

沌系统的动力学特征［１，２］ ．之后，人们开始研究如何

控制混沌，因为此时发现的混沌特性通常会影响系

统的正常工作，甚至会造成系统崩溃、危及人身安

全．后来，随着对混沌特性研究的进一步深入，越来

越多的学者意识到混沌行为在很多工程应用方面

具有利用价值．使非混沌系统产生混沌，或者使系

统保持混沌状态称为混沌反控制，或混沌化．如今，
混沌反控制技术已被广泛应用于各个领域［３－１２］，包
括生命科学、保密技术与通信、流体及超细粉末混

合、工业搅拌、振动压实、机械隔振等．
海军工程大学朱石坚等［１３－１６］ 提出利用混沌化

技术来改变系统振动噪声的线谱结构，从而提高水

下航行器的隐声性能．湖南大学徐道临等［８，９，１４－１６］

在此基础上提出混沌品质的概念，即在实现隔振系

统混沌化的同时，通过采用准零刚度隔振和优化控

制参数来进一步降低线谱特征峰值，改善混沌线谱

品质．日本学者［１７］ 发现当研磨电机工作在潮湿和

恒压工况时，混沌转速下的磨削量和磨削效率都要

优于恒速、正弦和随机转速等工况，混沌转速下的

磨削效率甚至达到了恒转速工况下的两倍．香港大

学 Ｃｈａｕ 等人［１８］发现在低雷诺数的搅拌中，搅拌转

速达到混沌转速时，要比普通的匀速搅拌取得更好

的搅拌效果．同时，他们［１９］ 利用混沌 ＰＷＭ 波形来

取代传统的恒频 ＰＷＭ 以减小电机驱动的电磁干

扰．中国农业大学龙运佳等［１１，１２］将混沌激振器用于

重型混沌振动压路机，对其进行了振动与压实试

验，该型混沌压路机与同吨位常规重型压路机相比

可提高工效 １０％以上，现已被用于我国西北高速公

路建设．Ｃｈａｕ 等［２０，２１］ 利用混沌化电机来驱动振动

压实机，结果表明混沌振动压实机比传统的匀速和

周期振动压实机具有更好的压实效果．
混沌电机驱动在工业应用中的拓展，为混沌应

用开辟了一条新的途径．目前，电机的混沌反控制，
一般采用基于设计方法的电机驱动混沌化［２２］ 和基

于延时反馈控制方法的电机驱动混沌化［１８，２０，２１，２３］ ．
本文提出采用广义同步混沌化的驱动控制原

理［２４，２５］，利用经典的 Ｌｏｒｅｎｚ 系统［２６，２７］ 产生混沌信
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号去驱动永磁直流电机，使电机转速工作处于混沌

状态．一方面，Ｌｏｒｅｎｚ 系统的响应输出很容易通过

电路设计实现；另一方面，本方法只需要控制直流

电机的驱动电流同步跟踪于 Ｌｏｒｅｎｚ 系统的单变量

响应输出，省去了测速装置．这样即能保证电机转

速工作处于混沌状态，又能减小同步控制和驱动控

制的成本，有利于推广应用．

１　 同步控制器设计

基于 Ｌｏｒｅｎｚ 系统驱动的直流电机混沌化控制

系统结构框图如图 １ 所示，直流电机系统和 Ｌｏｒｅｎｚ
系统是两个非同构的动力系统，第一个系统的状态

变量 ｘ ∈ Ｒｐ ，第二个系统的状态变量 ｙ ∈ Ｒｑ ，系
统的动力学方程可以表述为

ｘ·ｎ（ ｔ） ＝ ｆ１１（ｘｎ，ｘｓ，ｔ）

ｘ·ｓ（ ｔ） ＝ ｆ１２（ｘｎ，ｘｓ，ｔ）

ｙ·ｓ（ ｔ） ＝ ｆ２１（ｙｎ，ｙｓ，ｔ）

ｙ·ｎ（ ｔ） ＝ ｆ２２（ｙｎ，ｙｓ，ｔ）

（１）

图 １　 同步控制系统结构框图

Ｆｉｇ．１　 Ｓｔｒｕｃｔｕｒｅ ｄｉａｇｒａｍ ｏｆ ｓｙｎｃｈｒｏｎｏｕｓ ｃｏｎｔｒｏｌ ｓｙｓｔｅｍ

其中，ｘｎ ＝｛ｘｉ∈ｘ：ｘｉ∉ｘｓ｝，ｙｎ ＝｛ｙｉ∈ｙ：ｙｉ∉ｙｓ｝，ｘｉ 和

ｙｉ 表示 ｘ和 ｙ的第 ｉ个元素．如果当 ｔ→∞ 时 ｘｓ → ｙｓ

，我们就说系统是广义同步的．为了实现广义同步

化，我们在上述系统的基础上增加控制部分，这样

式（１）可以表示为

ｘ·ｎ（ ｔ） ＝ ｆ１１（ｘｎ，ｘｓ，ｔ）

ｘ·ｓ（ ｔ） ＝ ｆ１２（ｘｎ，ｘｓ，ｔ） ＋ ｇ（ｕ，ｔ）

ｙ·ｓ（ ｔ） ＝ ｆ２１（ｙｎ，ｙｓ，ｔ） ＋ ｈ（ ｔ）

ｙ·ｎ（ ｔ） ＝ ｆ２２（ｙｎ，ｙｓ，ｔ）

（２）

其中， ｕ 是控制信号， ｇ（ｕ，ｔ） 表示同步控制器， ｙ
和 ｘ 系统分别属于驱动和响应系统．我们希望在控

制器的作用下， ｆ１２ 能够跟随 ｆ２１ 的动力学变化．同
时，我们在 ｆ２１ 部分增加了一个耦合函数 ｈ（ ｔ） ，用

来表征 ｘ 和 ｙ 系统的耦合关系．如果 ｈ ＝ ０，表示两

个系统之间的耦合属于单向耦合，即 ｙ 系统作为主

系统用来驱动 ｘ 系统， ｘ 系统作为从系统，属于对

应的响应系统；如果 ｈ ≠ ０，则此耦合属于双向耦

合，表示除了 ｙ系统会对 ｘ系统产生作用， ｘ系统同

样也会对 ｙ 系统的动力学行为产生影响．为了设计

系统的同步控制器 ｇ（ｕ，ｔ） ，我们对式（２）中的耦

合部分单独讨论

ｘ·ｓ（ ｔ） ＝ ｆ１２（ｘｎ，ｘｓ，ｔ） ＋ ｇ（ｕ，ｔ）

ｙ·ｓ（ ｔ） ＝ ｆ２１（ｙｎ，ｙｓ，ｔ） ＋ ｈ（ ｔ）
（３）

根据上述方程，同步误差函数关于时间的导数

可以表示为

ｅ·（ ｔ） ＝ ｙ·ｓ（ ｔ） － ｘ·ｓ（ ｔ）
＝ Δｆ（ ｔ） ＋ ｈ（ ｔ） － ｇ（ｕ，ｔ）
＝ － λｅ ＋ Ｌ（ ｔ） － ｇ（ｕ，ｔ） （４）

在这里，误差 ｅ ＝ ｙｓ － ｘｓ ， Δｆ（ ｔ） ＝ ｆ２１ － ｆ１２ ，反馈

函数 Ｌ ＝ Δｆ ＋ λｅ ＋ ｈ ．从上式可以看出，当 ｔ → ∞
时，若 Ｌ（ ｔ） － ｇ（ｕ，ｔ） → ０，且 λ ＞ ０，则误差函数在

平衡点处是渐进稳定的．为了方便后续讨论，我们

把反馈函数 Ｌ（ ｔ） 和同步控制器 ｇ（ｕ，ｔ） 的表达式

另写为 Ｌ（ ｔ） ＝ ｋ∗ξ ， ｇ（ｕ，ｔ） ＝ ｋ（ ｔ）ξ ．其中， ｋ∗ 表示

对应系统参数的一组常量， ｋ（ ｔ） 表示同步控制器

的控制增益函数，ξ 表示由一组耦合变量构成的向

量．函数 φ（ ｔ） ＝ ｋ∗－ ｋ（ ｔ） 代表参数误差，我们可以

去寻找合适的控制增益函数 ｋ（ ｔ） ，使得 ｔ → ∞ 时

φ（ ｔ） → ０，系统在平衡点处趋于稳定．对于含有 Ｎ
个误差方程的系统来说，第 ｉ 个误差方程可以写为

ｅ·ｉ（ ｔ） ＝ － λ ｉ ｅｉ ＋ φｉ（ ｔ）ξ（ ｔ） （５）
其中， φｉ（ ｔ） 是 １ × ｍ的向量，ξ（ ｔ）是 ｍ × １ 的向量．
为了证明系统的稳定性，我们构造一个下述形式的

李雅普诺夫函数

Ｖ（ ｔ） ＝ ∑
Ｎ

ｉ ＝ １

ｅ２ｉ
２

＋
φｉφＴ

ｉ

２γ ｉ

æ

è
ç

ö

ø
÷ （６）

其中， γｉ 是参数误差函数的控制增益．然后，我们就

可以得到 Ｖ（ ｔ） 关于时间的导数

Ｖ
·
（ ｔ）＝ ∑

Ｎ

ｉ ＝ １
（ｅｉ（－λ ｉｅｉ＋φｉ（ ｔ）ξ（ ｔ））＋

１
γｉ
φｉ φ· ｉ

Ｔ）

（７）
在这里，我们如果选择 φ·Ｔ

ｉ ＝ － ｋ·Ｔ ＝ － γ ｉｅｉξ ，就
可以得到

Ｖ
·
（ ｔ） ＝ －∑

Ｎ

ｉ ＝ １
λ ｉ ｅ２ｉ （８）

２９
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也就是说，当 λ ｉ ＞ ０ 时误差函数在平衡点 ｅ＝ ０
处是渐进稳定的．

２　 直流电机和 Ｌｏｒｅｎｚ 系统的耦合同步控制

Ｌｏｒｅｎｚ 系统在特定参数区间是一个典型的混

沌系统．所以，如能实现电机参数与 Ｌｏｒｅｎｚ 系统参

数的稳定同步，就可以保证电机工作在混沌区间．
永磁直流电机的数学模型可以表示为

ω· ＝ － Ｂ
Ｊ
ω ＋

ＫＴ

Ｊ
ｉ －

Ｔｌ

Ｊ

ｉ
· ＝ －

ＫＥ

Ｌａ
ω －

Ｒａ

Ｌａ
ｉ ＋

Ｖｉｎ

Ｌａ

（９）

在这里， ω 、 ｉ 分别为电机转速和电机电流； Ｂ
为粘性摩擦系数； Ｊ 为转子转动惯量； ＫＴ 、 ＫＥ 分别

为转矩系数和感应电势系数； Ｌａ 、 Ｒａ 分别为电枢

回路电感和电阻； Ｔｌ 、 Ｖｉｎ 分别为负载转矩和电机

的输入电压．
２．１　 单变量耦合方式

如果驱动和响应系统之间采用单变量耦合的

方式，即采用 Ｌｏｒｅｎｚ 系统的输出 ｙ１ 作为驱动信号，
施加反馈控制于电流环节，以实现电机转速的混沌

反控制．用于同步混沌化的闭环控制系统方程如

下：

ｘ·１ ＝ － Ｂ
Ｊ
ｘ１ ＋

ＫＴ

Ｊ
ｘ２ －

Ｔｌ

Ｊ

ｘ·２ ＝ －
ＫＥ

Ｌａ
ｘ１ －

Ｒａ

Ｌａ
ｘ２ ＋ ｇ（ｕ，ｔ）

ｙ·１ ＝ σ（ｙ２ － ｙ１） ＋ ｈ（ ｔ）

ｙ·２ ＝ ｃｙ１ － ｙ２ － ｙ１ｙ３

ｙ·３ ＝ ｙ１ｙ２ － ｂｙ３

（１０）

其中， ｘ１ 代表电机转速 ω ， ｘ２ 代表电机电流 ｉ ．根据

本论文第二部分同步控制器设计的相关内容，我们

可以得到

Δｆ ＝ ｆ２１ － ｆ１２ ＝ σ（ｙ２ － ｙ１） ＋ ｈ（ ｔ） ＋
ＫＥ

Ｌａ
ｘ１ ＋

Ｒａ

Ｌａ
ｘ２ － ｇ（ｕ，ｔ） ＝ － σｅ ＋ σ（ｙ２ － ｘ２） ＋

ｈ（ ｔ） ＋
ＫＥ

Ｌａ
ｘ１ ＋

Ｒａ

Ｌａ
ｘ２ － ｇ（ｕ，ｔ） （１１）

其中， ｅ ＝ ｙ１ － ｘ２，我们发现当 λ ＝ σ 时上式（１１）等
于式（４）的右边部分，所以我们可选择同步控制器

形式为，
ｇ（ｕ，ｔ） ＝ Ｌ（ ｔ） ＝ σ（ｙ２ － ｘ２） ＋ ｈ（ ｔ） ＋

ＫＥ

Ｌａ
ｘ１ ＋

Ｒａ

Ｌａ
ｘ２ （１２）

在这里，耦合向量 ξ ＝｛（ｙ２－ｘ２），ｈ（ ｔ），ｘ１，ｘ２｝Ｔ，

参数向量 ｋ∗ ＝ ｛σ，１，
ＫＥ

Ｌａ
，
Ｒａ

Ｌａ
｝ ，控制增益 ｋ（ ｔ） ＝

｛ｋ１，ｋ２，ｋ３，ｋ４ ｝ Ｔ ．当 ｋ１ → σ，ｋ２ → １，ｋ３ →
ＫＥ

Ｌａ
，ｋ４ →

Ｒａ

Ｌａ
时，永磁直流电机和 Ｌｏｒｅｎｚ 系统将实现广义稳

定同步．
２．２　 多变量耦合方式

如果驱动和响应系统之间采用多变量耦合的

方式，即采用 Ｌｏｒｅｎｚ 系统的输出 ｙ１ 作为驱动信号

去控制转速环节，输出 ｙ２ 作为驱动信号去控制电

流环节．同时，为了简化讨论过程，我们在此仅考虑

单向耦合即 ｈ ＝ ０．用于广义同步混沌化的闭环控制

系统方程如下：

ｘ·１ ＝ － Ｂ
Ｊ
ｘ１ ＋

ＫＴ

Ｊ
ｘ２ －

Ｔｌ

Ｊ
＋ ｇ１（ｕ１，ｔ）

ｘ·２ ＝ －
ＫＥ

Ｌａ
ｘ１ －

Ｒａ

Ｌａ
ｘ２ ＋ ｇ２（ｕ２，ｔ）

ｙ·１ ＝ σ（ｙ２ － ｙ１）

ｙ·２ ＝ ｃｙ１ － ｙ２ － ｙ１ｙ３

ｙ·３ ＝ ｙ１ｙ２ － ｂｙ３

（１３）

根据本论文第二部分同步控制器设计的相关

内容，我们可以得到

Δｆ＝ ｆ２１－ｆ１２ ＝

σ（ｙ２－ｙ１）＋
Ｂ
Ｊ
ｘ１－

ＫＴ

Ｊ
ｘ２＋

Ｔ１

Ｊ
ｘ－ｇ１（ｕ１，ｔ）

ｃｙ１－ｙ２－ｙ１ｙ３＋
ＫＥ

Ｌａ
ｘ１＋

Ｒａ

Ｌａ
ｘ２－ｇ２（ｕ２，ｔ）

æ

è

ç
ç
ç
çç

ö

ø

÷
÷
÷
÷÷

＝

－σｅ１＋σ（ｙ２－ｘ１）＋
Ｂ
Ｊ
ｘ１－

ＫＴ

Ｊ
ｘ２＋

Ｔ１

Ｊ
ｘ－ｇ１（ｕ１，ｔ）

－ｅ２＋ｃｙ１－ｘ２－ｙ１ｙ３＋
ＫＥ

Ｌａ
ｘ１＋

Ｒａ

Ｌａ
ｘ２－ｇ２（ｕ２，ｔ）

æ

è

ç
ç
ç
çç

ö

ø

÷
÷
÷
÷÷

（１４）

其中， ｅ１ ＝ ｙ１ － ｘ１， ｅ２ ＝ ｙ２ － ｘ２，我们可选择同步控

制器形式为：

３９
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ｇ１（ｕ１，ｔ）＝ Ｌ１（ ｔ）＝ σ（ｙ２－ｘ１）＋
Ｂ
Ｊ
ｘ１－

ＫＴ

Ｊ
ｘ２＋

Ｔｌ

Ｊ

ｇ２（ｕ２，ｔ）＝ Ｌ２（ ｔ）＝ ｃｙ１－ｘ２－ｙ１ｙ３＋
ＫＥ

Ｌａ
ｘ１＋

Ｒａ

Ｌａ
ｘ２

（１５）

２．３　 数值仿真

在以上理论推导的基础上，编写仿真程序，对
永磁直流电机和 Ｌｏｒｅｎｚ 系统耦合的动态响应过程

进行仿真，以验证混沌同步控制的有效性．选取永

磁直流电机的实际参数为： Ｌａ ＝ ０．４Ｈ ， Ｒａ ＝ １．１Ω ，
ＫＴ ＝ ０．０４９９８ Ｎ·ｍ( ) ／ Ａ，Ｂ ＝ ０．００２２Ｎ·ｍ ／ （ｒａｄ ／ ｓ），

Ｊ ＝ １．０３８８ × １ ０ －５ｋｇ·ｍ２，ＫＥ ＝ ０．０４９７５Ｖ ／ （ｒａｄ ／ ｓ） ．
Ｌｏｒｅｎｚ 系统的参数为 σ ＝ １０， ｃ ＝ ２８， ｂ ＝ ８ ／ ３．系统

的初始值选择为 ｘ１（０） ＝ ０， ｘ２（０） ＝ ０， ｙ１（０） ＝ １，
ｙ２（０） ＝ １ 和 ｙ３（０） ＝ １．其实，系统参数和初始值的

选取可以是任意的，同步控制对于任意参数都是适

用的．在仿真过程中，计算步长为 １ｍｓ，计算时间为

２０ｓ，观察电机参数在此运行周期内的动态响应过

程．
采用上述式（１２）的控制器形式之后，我们进

行系统数值仿真以验证单变量耦合控制器的广义

同步混沌化控制效果．其中，单向耦合系统的数值

仿真结果如图 ３（ａ）所示，永磁直流电机的电流响

应 ｘ２ 用实线（红色）表示，Ｌｏｒｅｎｚ 系统的响应 ｙ１ 用

虚线（黑色）表示．同步控制器在 ｔ ＝ ０ 时是关闭的，
所以两个系统的响应刚开始是不同步的．在 ｔ ＝ ５ｓ
时控制器启动，从图 ３（ ａ）内的小窗口可以看出大

约只经过了 ０．５ｓ 左右，电机电流 ｘ２ 就快速同步于

Ｌｏｒｅｎｚ 系统的 ｙ１ 响应变化了，说明同步控制器的效

果是显著的．根据算法［２８］，计算此时系统的最大李

雅普诺夫指数为 １．５１０５，其值大于零，也验证了此

时系统响应对应混沌运动状态．
我们知道，反馈增益 ｐ 与系统混沌化所需的输

入能量息息相关．反馈增益越大，所需的输入能量

越大，考虑反馈增益后的同步控制器形式为：

ｇｐ（ｕ，ｔ）＝ ｐＬ（ ｔ）＝ ｐ σ（ｙ２－ｘ２）＋
ＫＥ

Ｌａ
ｘ１＋

Ｒａ

Ｌａ
ｘ２

æ

è
ç

ö

ø
÷

（１６）
下面我们通过分析电机转速关于反馈增益 ｐ

的分岔图来评估混沌同步化控制的能量水平．
从分岔图可以看出， ｐ ＝ ０ 即未施加同步控制

时，直流电机的转速为周期响应．施加同步控制后，

系统混沌化的临界反馈增益 ｐｃ 很小．当 ｐ ＞ ｐｃ

时，在整个参数域内可以得到不间断的混沌运动．

图 ２　 电机转速关于反馈增益 ｐ 的分岔图

Ｆｉｇ．２　 Ｇｌｏｂａｌ ｂｉｆｕｒｃａｔｉｏｎ ｄｉａｇｒａｍ ｖｅｒｓｕｓ ｆｅｅｄｂａｃｋ ｇａｉｎ ｐ

　 　 另外，取 ｈ（ ｔ） ＝ ｘ２ 时，双向耦合系统的数值仿

真结果如图 ３（ｂ）所示．永磁直流电机的电流响应

ｘ２ 用实线（红色）表示，施加耦合 ｈ（ ｔ） 之后 Ｌｏｒｅｎｚ
系统的响应 ｙ１ 用虚线（黑色） 表示，未施加耦合

ｈ（ ｔ） 作用的 Ｌｏｒｅｎｚ 系统的响应 ｙ１ 用点划线（蓝
色）表示．同步控制器在 ｔ ＝ ０ 时是关闭的，所以两个

系统的响应刚开始是不同步的．在 ｔ ＝ ５ｓ 时控制器

启动，大约只经过了 ０．５ｓ 左右，电机电流 ｘ２ 就快速

同步于 Ｌｏｒｅｎｚ 系统的 ｙ１ 响应．但需要注意的是，电
机电流 ｘ２ 的动力学行为不是同步于原始 Ｌｏｒｅｎｚ 系

统的 ｙ１ 响应，而是同步于耦合 ｈ（ ｔ） 之后 Ｌｏｒｅｎｚ 系

统的 ｙ１ 响应．所以，双向耦合在两个系统之间产生

了相互的作用，同步混沌化结果不同于前面图 ３
（ａ）所示的单向耦合系统．
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图 ３　 单变量耦合系统的输出响应

Ｆｉｇ．３　 Ｒｅｓｐｏｎｓｅ ｏｆ ｓｉｎｇｌｅ ｖａｒｉａｂｌｅ ｃｏｕｐｌｉｎｇ ｓｙｓｔｅｍ

图 ４　 多变量耦合系统的输出响应

Ｆｉｇ．４　 Ｒｅｓｐｏｎｓｅ ｏｆ ｍｕｌｔｉ⁃ｖａｒｉａｂｌｅ ｃｏｕｐｌｉｎｇ ｓｙｓｔｅｍ

　 　 采用式（１５）的控制器形式之后，多变量单向

耦合系统的输出响应如图 ４（ａ）和（ｂ）所示．其中，
实线（红色）表示电机参数 ｘ１ 和 ｘ２、虚线（黑色）表
示 Ｌｏｒｅｎｚ 系统的输出 ｙ１ 和 ｙ２ ．图 ４（ａ）表示电机转

速 ｘ１ 跟踪 Ｌｏｒｅｎｚ 系统输出 ｙ１ 响应的动态过程，图 ４
（ｂ）表示电机电流 ｘ２ 跟踪 Ｌｏｒｅｎｚ 系统输出 ｙ２ 响应

的动态过程．在 ｔ ＝ ０ 时，由于控制器均没有开启，所
以两个响应过程都是不同步的．在 ｔ ＝ ５ｓ 时，两个控

制器均开始工作，电机转速大约经过了 ０．５ｓ，很快

就同步于 Ｌｏｒｅｎｚ 系统输出 ｙ１ 响应的变化了．但是，
电机电流大约经过了 ４．５ｓ 才同步于输出 ｙ２ 响应的

变化．这是因为，对于 ｘ１ 和 ｙ１ 的广义同步混沌化来

说，参数 λ１ ＝ σ ＝ １０．而对于 ｘ２ 和 ｙ２ 的同步混沌化，
参数 λ２ ＝ １．也就是说，考虑系统误差的收敛速度

时， ｅ１ ＝ ｅｘｐ（ － １０ｔ），ｅ２ ＝ ｅｘｐ（ － ｔ），ｅ１ 要比 ｅ２ 的收

敛速度快得多．所以，对应电机转速的同步混沌化

速度要比电机电流的同步混沌化速度更快．
从单变量和多变量耦合对永磁直流电机和

Ｌｏｒｅｎｚ 系统的动力学同步行为影响来看，在施加了

同步控制之后，直流电机的系统参数均可以同步于

Ｌｏｒｅｎｚ 系统的输出响应．单变量耦合中，单向耦合

直接采用 Ｌｏｒｅｎｚ 系统输出响应 ｙ１ 驱动电机电流

ｘ２；而双向耦合除了用 ｙ１ 驱动 ｘ２ 之外，耦合作用在

两个系统中产生了相互的作用和影响．多变量耦合

中，电机转速 ｘ１ 和电流 ｘ２ 均可以同步于 Ｌｏｒｅｎｚ 系

统的输出响应 ｙ１ 和 ｙ２，但两个误差函数的收敛速

度由于控制参数的选取不同会有较大差异．

３　 结论

针对混沌电机驱动的工业应用，本文探讨了在

单变量和多变量耦合情况下两类非同构系统的广

义同步混沌化问题，并通过设计相应的同步控制

器，实现驱动和响应系统的稳定同步． 同时，以

Ｌｏｒｅｎｚ 系统驱动永磁直流电机为例，推导出了同步

控制器的解析表达式，使永磁直流电机同步于

Ｌｏｒｅｎｚ 系统的输出响应变化，其电机转速工作在混

沌状态．该方法可以使电机始终工作在混沌区间，
为电机的混沌化驱动控制提供了新的思路．

在永磁直流电机的混沌反控制过程当中，我们

利用了 Ｌｏｒｅｎｚ 系统的相关特性．一方面，该系统很

容易通过简单的电路设计来实现；另一方面，我们

可以充分利用该系统在特定参数区间的混沌特性．
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经过对比分析，我们认为更适合实际应用的是单变

量单向耦合的驱动响应系统结构，利用 Ｌｏｒｅｎｚ 系统

的单变量输出响应，直接驱动永磁直流电机的电流

环节，使电机转速工作在混沌状态．这样，可以减小

整个系统同步控制和驱动控制的成本，而不影响直

流电机系统的混沌反控制效果．
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