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Fig.1 In-phase bursting (left column) and anti-phase bursting ( right column) of neurons with different sodium ionic conductances.
a) and (b): gy, =2.8nS ; (¢) and (d): =5nS. Other parameters can be referred to Appendix.
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Fig.2 Time series of different variable

(a) Time series of V,, V,, [Ca;],

and goanto s (b) Time series of hy and h, for in-phase synchronization ;

(¢) Time series of hy and h, for anti-phase synchronization. Here gy, =5nS and other parameters can be referred to Appendix.
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Fig.3 The fast-slow cynamic analysis of membrane potential at gy, =2.8nS

(a) in-phase bursting; (b) anti-phase bursting; (¢) the dynamic analysis of stage (D in the in-phase mixed bursting;

(d) the dynamic analysis of stage 2 in the in-phase mixed bursting; (e) the dynamic analysis of stage (D in the anti-phase bursting;

(f) the dynamic analysis of stage (2) in the anti-phase bursting. The values of other parameters are shown in Appendix.
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Fig.4 The fast-slow cynamic analysis of membrane potential at gy, =5 nS

(a) in-phase bursting, (b) anti-phase bursting, time series of V,, [ Ca]; (¢) the dynamic analysis of stage (D in the in-phase mixed bursting;

(d) the dynamic analysis of stage @ in the in-phase mixed bursting;(e) the dynamic analysis of stage (D in the anti-phase bursting; (f) the dynamic analysis

of stage @ in the anti-phase bursting. The legends of points and curves are the same as those in Fig.3, and other parameters can be referred to Appendix.
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MULTIPLE TIME SCALE DYNAMICS ANALYSIS OF MIXED BURSTING
WITHIN THE COUPLED PRE-BOTZINGER COMPLEX NEURONS *

Ma Fen' Duan Lixia'" Liang Tongtong' Liang Wangjuan' Zhao Yong’
(1.School of Science, North China University of Technology, Beijing 100144, China)
(2.School of Mathematics and Information Science, Henan Polytechnic University, Jiaozuo 454000, China)

Abstract The pre-Botzinger complex is an origin and center for the respiratory rhythm generation within the
mammalian brain stem. In this paper, based on the two-coupled neuron network in the pre-Bétzinger complex,
the effects of calcium and sodium currents on the rhythm generation and the transition dynamics were studied.Ac-
cording to different stages of the calcium oscillation, the period of the mixed bursting was separated into different
stages related to different time scales. Using the multiple time scale dynamics analysis, fast-slow decomposition
and bifurcation analysis, the dynamic mechanism of the mixed bursting with the change of sodium current was ex-
plored.Furthermore , different mixed-bursting patterns of coupled neurons and transitions of in-phase and anti-
phase bursting were studied. The results show that the periodic oscillation of calcium ion is related to the change
of slow time scale, and the change of slow time scale and the relative position of the bifurcation curves are heavily
dependent on dynamics of the mixed bursting. This research is of great significance in understanding the dynamics
of large networks in pre-Botzinger complex. It provides insights into the generation mechanisms of the respiratory

rhythm.

Key words pre-Bitzinger complex, mixed bursting, fast-slow decomposition, multiple time scale, bifurcation
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