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摘要　 为了得到具有隔振功能的新型材料，本文对带有弹性关节的新型二维隔振结构的形状、尺寸及材料

的选取进行了研究．探究了负泊松比结构实现宽频的带隙功能的作用，分析其在低频处的隔振性能．首先，文

章建立了基于弹性关节单元的有限元模型，并以弹性关节的角度作为设计变量，确定角度与单元模型前三

阶模态频率之间的关系，获得了最优的结构参数及单元构型．其次，对单元结构进行了动力学分析，给出了结

构的动力学响应曲线，得到了隔振频带与结构参数的关系，并且确定了最优角度下的带隙深度和宽度．最后，

建立了二维隔振结构有限元模型，对此二维结构进行了动力学分析，得到了在不同方向激励下的动力学响

应曲线．结果表明，该二维隔振结构在低频处具有宽而深的频率带隙，实现了将弹性关节与二维隔振结构相

结合的低频宽频隔振，为隔振领域的结构和材料设计提供了新思路．
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引言

随着科技的发展，在机械加工、航空航天、海洋

船舶等一些已经步入精密、超精密时代的行业，对
于振动带来的危害有着更加苛刻的要求，低频振动

的干扰直接影响精密操作的质量，降低设备加工的

精度．一般地，大地脉动型以及人员走动所引起频

率在 ０～３Ｈｚ 的振动；发动机、变压器能够引发频率

在 ６～６５Ｈｚ 的振动；房屋自身的振动在 １０ ～ １００Ｈｚ
之间［１］ ．所以，隔振系统在低频处具有效果显著的

宽频隔振能力．
主动控制的隔振系统对于避免振动带来的危

害具有十分显著的效果，然而，其具有造价成本高，
结构复杂，且需要性能优异的作动器与传感器等缺

点．被动无源的隔振系统结构简单、造价成本低，被
广泛应用于工程领域，研究学者通过改变其结构特

性，来获得最优隔振效果．因此，针对低频带上的振

动抑制共性问题，大部分研究集中在如何设计材料

的结构以实现低频隔振需求的力学特性．
传统的被动线性隔振系统，只有减小系统的刚

度或者增加承载质量，才能实现低频、超低频隔振，

而系统的静态承载能力会降低．因此，准零刚度隔

振系统因其能实现高静低动的特性而被广泛研究

与应用．准零刚度隔振系统在 １９８９ 年被提出［２］，并
对其动力学特性进行了分析；ＣＡＲＲＥＬＬＡ 等［３，４］ 分

析了准零刚度隔振系统的稳态响应并且对其做了

优化设计；Ｘｕ 等［５，６］对准零刚度隔振器进行了设计

和研究，通过一系列的实验结果显示出准零刚度隔

振系统的性能明显优于相应的线性隔振系统，并且

实现了在跳跃频率区间内的隔振，拓宽了低频下的

有效隔振频率区间；白晓辉等［７］利用碟形弹簧的负

刚度特性，将其与正弹簧并联，调整参数可以降低

隔振系统固有频率，并且达到了拓宽隔振频带的目

的；彭献等［８］提出了一种准零刚度被动隔振系统，
进一步研究了负刚度特性，避免了传统隔振的缺

点；孙秀婷等［９］设计的新型多方向准零刚度隔振平

台，通过改变三角机构的预拉压量来扩大有效的隔

振频带；张梗林等［１０］ 通过对负泊松比蜂窝夹芯隔

振器的参数进行设计，并对其进行动力学分析，得
到了蜂窝单元的参数对隔振器结构应力、固有频

率、底部振级及振级落差影响曲线，建立了隔振器

的动力学优化模型，说明了隔振器的形状参数对曲
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线影响的有效性；尹冠生等［１１］ 对梯度负泊松比蜂

窝材料的性能进行分析，得出其在结构防护上具有

良好的前景．
同时我们发现：自然界中存在一些具有高静低

动特性的隔振现象，鸟类腿部能够支撑整个身体的

重量，而当鸟类经历飞行和跳跃着陆时，其腿部关

节的肌肉软组织充当缓冲介质，以减小来自地面的

能量冲击，国内外学者由此对仿生机器人腿部结构

设计开展了一系列的研发工作． Ｓｈｕｕｊｉ Ｋａｊｉｔａ 等［１２］

设计位置控制的双足机器人，其主要是对机器人腿

部受到垂直振动进行抑制，通过对频率响应的计

算，获得系统的振动模型；梁文宏等［１３］ 对双足机器

人着地振动的研究，揭示了机器人腿部产生振动主

要是由于各关节周期运动和外界激励造成的，并提

出了对双足机器人增加脚趾环的构想，对其进行弹

性动力学分析．
李韶华等［１４］ 通过建立刚柔耦合汽车整车模

型，与刚性车进行了对比，验证了刚柔耦合车辆的

正确性，并保证了汽车行驶的平顺性；Ｋａｔｈｅｒｉｎｅ Ａ
Ｂ 等［１５］ 分析了不同冲击力对肌肉活动以及软组织

力学性能的影响，并对软组织的机械性能进行研

究，对腿部着陆的顺应性奠定了力学基础； Ｓｕｎ
等［１６］设计的一种新型柔性关节隔振结构，通过对

两足动物腿部机械性能的研究，发现能够起到恢复

力的作用是关节，并进一步将折纸原理应用到柔性

关节上，获得了结构在受到冲击和低频激励时良好

的隔振效果．
受到动物腿部结构的启发，本文设计一种具有

弹性关节特性的二维隔振结构，考虑弹性关节自身

具有的柔韧性，利用折纸原理来实现关节弹性．研
究发现，本隔振结构在低频振动方面具有足够承载

能力，并且系统结构在被动控制下具有较宽的隔振

频带．

１　 单元结构建模及设计

１．１　 单元结构

根据鸟类腿部构型，基于仿生原理提出刚柔耦

合隔振材料，材料由多个隔振单元通过拓扑展开形

成，单个隔振单元的结构组成如图 １ 所示，是由顶

板、仿生关节、弹性臂、底板等构件组成的．其中，弹
性部分包含仿生关节，以及与其相连的弹性臂．仿
生关节抽象为图 １ 中所示的圆弧状结构，其与弹性

臂相切，弹性臂与水平方向的夹角为 θ ，上下板以

及弹性臂的材料是一致的，由于关节部分与弹性臂

的厚度差很大，因此，认为单元的弹性主要来自关

节部位，由此形成刚柔耦合的隔振单元．

图 １　 隔振结构示意图

Ｆｉｇ．１　 Ｓｃｈｅｍａｔｉｃ ｄｉａｇｒａｍ ｏｆ ｖｉｂｒａｔｉｏｎ ｉｓｏｌａｔｉｏｎ ｓｔｒｕｃｔｕｒｅ

　 　 如图 １ 所示，由于弹性臂与关节圆弧相切，且
圆弧角度的大小和弹性臂与水平方向的夹角 θ 是

互余的关系，所以对应不同的设计夹角 θ ，圆弧结

构的弧长是不同的，但由于关节圆弧的宽度材料是

不变的，因此关节圆弧的弯曲刚度也是不变的，由
此可知，夹角 θ 是结构的关键设计参数．隔振单元

的参数如表 １ 所示．
表 １　 单元结构尺寸

Ｔａｂｌｅ １　 Ｕｎｉｔ ｓｔｒｕｃｔｕｒｅ ｓｉｚｅ

Ｐｌａｔｆｏｒｍ Ｅｌａｓｔｉｃ ａｒｍ Ａｒｃ Ｕｎｉｔｓ
Ｌｅｎｇｔｈ ４０ １５ ５ ｍｍ
Ｗｉｄｔｈ ３ ３ ０．８ ｍｍ
Ｄｅｎｓｉｔｙ ２．７×１０３ ２．７×１０３ １．６×１０３ ｋｇ ／ ｍ３

Ｙｏｕｎｇ′ｓ ｍｏｄｕｌｕｓ ７０×１０３ ７０×１０３ ７．８×１０２ ＭＰａ
Ｐｏｉｓｓｏｎ′ｓ ｒａｔｉｏ ０．３ ０．３ ０．４７ —

单元结构的结构参数已经给出 （如表 １ 所

示），其承载能力在其有效的隔振频率范围内是足

够的．
１．２　 固有频率的最优判据

分析图 １ 的仿生隔振单元，一般来说，隔振带

隙处于不同阶固有频率的中间位置，通过改变弹性

臂与水平方向的夹角 θ ，分析其带隙的宽度和深度

的变化．

０３
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图 ２　 前三阶模态

Ｆｉｇ．２　 Ｆｉｎｉｔｅ ｅｌｅｍｅｎｔ ｍｏｄｅ ｏｆ ｔｈｅ ｆｉｒｓｔ ｔｈｒｅｅ ｏｒｄｅｒｓ

　 　 通过有限元模型的建立，设置的边界条件是将

底板固定，进行模态分析，可以得到如图 ２ 所示的

前三阶有限元模型，并可以得到对应的固有频率．
随后，改变弹性臂与水平方向的夹角 θ ，分析其带

隙的宽度和深度的变化．
表 ２　 不同角度 θ 的前三阶固有频率

Ｔａｂｌｅ ２　 Ｔｈｅ ｆｉｒｓｔ ｔｈｒｅｅ ｏｒｄｅｒ ｆｒｅｑｕｅｎｃｙ ｏｆ ｄｉｆｆｅｒｅｎｔ ａｎｇｌｅｓ θ

θ ｆ１ （Ｈｚ） ｆ２ （Ｈｚ） ｆ３ （Ｈｚ）
４０° １．８７ ２．７７ ３．４３
４５° １．２３ １．８８ ２．２２
５０° ２．７４ ４．７４ ５．３９
５５° １．６２ ２．７３ ３．１４
６０° ３．０１ ５．６２ ５．８１
６２° ３．３８ ６．２７ ６．９２
６４° ３．３９ ６．６４ ７．１９
６６° ３．５１ ７．３１ ８．０３

如表 ２ 所示，在其他结构几何尺寸不变的情况

下，改变 θ 的大小，通过模态分析，得到单元结构的

前三阶固有频率，比较第二阶固有频率和第三阶的

固有频率差值的大小，获得最优角度下的单元结

构．
通过弹性臂与水平位置角度 θ 的变化，各前三

阶的固有频率也随之改变，其最优的情况是第一阶

频率与第二阶频率相隔最远，实现低频带宽频的带

隙，所以，除了角度为可调的参数，在其他参数确定

的情况下，角度 θ 使得第二阶和第二阶频率距离最

近，就可以得到低频带内的宽频带隙．角度 θ 与频

率之间的关系如下

Ｉｉ ＝ θ ｆ３ － ｆ２ ＝ ｍｉｎ{ } ． （１）
式（１）中 ｆ２ 是第二阶固有频率， ｆ３ 是第三阶固有频

率．
以式（１）作为判断依据，由表 ２ 的单元有限元

模型前三阶固有频率的变化，可以看出在 ６０°时，
第二阶和第三阶的固有频率的差值最小，其大小为

０．１９Ｈｚ，初步判断此时单元结构是最优的，能否使

得结构达到宽频隔振，需要进一步获得带隙的宽度

来进行论证．
１．３　 单元的动力学响应

分析不同角度 θ 的单元结构在相同激励下的

动力学响应曲线，并进一步地确定对应的带隙宽

度．在相同边界条件下，通过改变结构参数确定不

同角度与固有频率之间的关系．如 ２．２ 节初步得到

θ 等于 ６０°时，第二阶和第三阶频率距离最近．

图 ３　 最优单元频响函数曲线

Ｆｉｇ．３　 Ｆｒｅｑｕｅｎｃｙ ｒｅｓｐｏｎｓｅ ｆｕｎｃｔｉｏｎ ｃｕｒｖｅ ｏｆ ｔｈｅ ｏｐｔｉｍａｌ ｕｎｉｔ

　 　 结构单元的弹性臂与水平方向的夹角为 ６０°
的频率响应函数曲线（ＦＲＦ）如图 ３ 所示．显然，在
第一阶和第二阶共振频率之间有相应的带隙，可以

看到第一阶共振频率约为 ２Ｈｚ，第二阶共振频率在

６Ｈｚ 附近，由此可以判断，本单元结构的带隙范围

在 ２Ｈｚ～６Ｈｚ 之间．

图 ４　 不同角度 θ 对应的带隙宽度

Ｆｉｇ．４　 Ｂａｎｄｇａｐ ｗｉｄｔｈ ｃｏｒｒｅｓｐｏｎｄｉｎｇ ｔｏ ｄｉｆｆｅｒｅｎｔ ａｎｇｌｅｓ θ

１３
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　 　 如图 ４ 所示，带隙的宽度与结构参数之间是复

杂的对应关系．增大角度 θ，带隙的起始点先增大后

减小，随后又增大，因此不同的角度下，带隙的起始

频率的变化是呈波浪变化．当角度在 ６０－７０ 度之间

变化时，带隙的范围在 ３Ｈｚ 到 ６Ｈｚ 之间，因此 １．２
节通过固有频率的优化准则得到的最优结构参数

并不是带隙最宽的充分条件，还需要设计隔振单元

的其他参数来调节第一阶固有频率，以实现更宽的

隔振带隙．因为在 θ＜６０°时，不存在宽频的带隙，所
以图 ４ 中并未显示带隙宽度．当 θ≥６０°时，存在低

频带内较宽的带隙．

２　 二维宽频模型及隔振效果

２．１　 二维模型

基于在单元结构中得到的理论依据，取单元关

节角度 θ 为 ６０°，建立二维宽频隔振结构模型．

图 ５　 二维宽频隔振结构模型

Ｆｉｇ．５　 Ｔｗｏ⁃ｄｉｍｅｎｓｉｏｎａｌ ｂｒｏａｄｂａｎｄ ｖｉｂｒａｔｉｏｎ ｉｓｏｌａｔｉｏｎ ｓｔｒｕｃｔｕｒｅ ｍｏｄｅｌ

　 　 建立的二维宽频隔振结构模型是一种周期结

构，如图 ５ 所示，每一个单元结构除 θ 为 ６０°不变，
其它结构的尺寸均不变，将其固定在厚度为 ３ｍｍ
的基础底板上．

图 ６　 二维宽频隔振结构的前三阶模态

Ｆｉｇ．６　 Ｔｈｅ ｆｉｒｓｔ ｔｈｒｅｅ ｏｒｄｅｒ ｍｏｄｅｌｓ ｏｆ ２⁃Ｄ

ｂｒｏａｄｂａｎｄ ｖｉｂｒａｔｉｏｎ ｉｓｏｌａｔｉｏｎ ｓｔｒｕｃｔｕｒｅ

　 　 首先对二维宽频隔振模型进行模态分析，得到

如图 ６ 所示的前三阶模态变形图．图（ａ）和（ｃ）是第

一阶固有频率和第三阶固有频率的振型，其中的变

形是由图（２）中的单元前三阶模态耦合得到的．图
（ｂ）是第二阶共振频率的振型，平台趋于平稳，说
明二维宽频结构能够承受水平载荷，避免使其受到

剪力的破坏．
２．２　 二维宽频模型的动力学响应

将二维宽频隔振结构模型固定在基础底板上

承受不同的位移激励信号．对建立如图 ５ 所示的二

维模型进行动力学响应分析，在 ０ ～ １５０Ｈｚ 之间进

行扫频，得到如图 ７ 所示的频响曲线，分别对基础

底板施加水平方向和竖直方向的位移激励，可以得

到两个方向的频响曲线以及带隙的范围．
图 ７ 所示的（ａ）图中，带隙（ｇａｐ⁃１）的宽度和深

度均是最大的，其带隙范围在 ４．５Ｈｚ～６８．２Ｈｚ 之间，
此时，二维宽频结构能够抵御来自水平方向激励，
尤其在低频激励下能够使得被隔振的结构得到保

护．图（ｂ）是底板所受到的是来自竖直方向的位移
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激励，带隙（ｇａｐ⁃１）的范围在 ５．３Ｈｚ ～ ３２．９Ｈｚ 之间，
也能够达到低频带下宽频的隔振效果，此时可以避

免来自竖直方向振动带来的危害．

图 ７　 二维宽频结构频率响应曲线

Ｆｉｇ．７　 Ｆｒｅｑｕｅｎｃｙ ｒｅｓｐｏｎｓｅ ｃｕｒｖｅ ｏｆ ２⁃Ｄ ｂｒｏａｄｂａｎｄ ｓｔｒｕｃｔｕｒｅ

３　 结论

本文用带有负泊松比的材料，建立单元隔振结

构模型，通过对比不同角度下单元结构前三阶的固

有频率以及带隙范围，得到最优单元隔振模型，并
建立二维隔振模型，进行动力学响应分析，实现了

宽且深的带隙功能．
此外，在单元结构的动力学响应分析中，其带

隙宽度呈波浪趋势变化，所以，要确定最优的单元

结构，还需要设计其他结构参数，使单元结构的带

隙宽度达到最优．
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