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摘要　 本文研究线弹性均质材料杆的固有振动对偶问题，即两种杆在怎样的截面变化和齐次边界下具有相

同固有频率． 首先，通过纵向位移和内力的对偶描述，给出两种杆异截面对偶的截面变化条件和边界条件，

并将其分类为固定⁃固定杆与自由⁃自由杆对偶，固定⁃自由杆与自由⁃固定杆对偶等． 上述对偶杆具有相同固

有频率，而两者的位移振型互为位置坐标的导数． 其次，限定两种对偶杆的截面变化相同，给出杆的截面积

函数表达式． 此时，固定⁃固定杆与自由⁃自由杆构成同截面对偶，而固定⁃自由杆和自由⁃固定杆的同截面对

偶彼此为镜像；等截面杆也具有上述对偶性质． 最后，将上述研究推广到材料性质沿轴向变化的变截面杆固

有振动对偶问题． 文中所有结论均适用于圆轴在齐次边界条件下的扭转固有振动对偶问题．

关键词　 变截面杆，　 等截面杆，　 对偶，　 固有振动，　 内力振型

ＤＯＩ：　 １０．６０５２ ／ １６７２⁃６５５３⁃２０２０⁃１００

引言

由线弹性均质材料制成的直杆（以下简称为

杆）是工程结构的基本单元，也是分析和设计工程

结构时常用的简化力学模型． 人们对杆的动力学研

究具有悠久历史． 在理论研究方面，既有引入变形

假设，仅关注杆纵向动力学的初等理论［１］；也有放弃

变形假设，针对圆截面杆的三维弹性动力学理论［２］ ．
近期研究主要针对变截面杆［３，４］、非局部弹性杆［５］

的动力学问题，并日益关注动态设计问题［６］ ．
早年，人们在设计管乐时发现：对于两把长度

均为 Ｌ 的长号 ａ 和 ｂ，命它们的小端固定、大端自

由，用 Ａ（ｘ）和 􀭹Ｂ（ｘ）分别表示长号 ａ 和长号 ｂ 距离

小端 ｘ 处的截面积，则当 Ａ（ ｘ） 􀭹Ｂ（Ｌ－ｘ）为常数时，
两把长号内的气柱具有相同固有频率［７］ ． 后来，人
们逐步认识到，这是变截面固定⁃自由杆的动力学

性质． Ｒａｍ 和 Ｅｌｈｅｙ 曾用有限差分法求解变截面杆

的动力学方程，研究了上述性质［８］ ． 他们将这样截

面形状不同、但具有相同固有频率的固定⁃自由杆

称为对偶． 此外，若干介绍等截面杆振动的著作指

出，自由⁃自由杆与固定⁃固定杆具相同的固有频率

方程［９，１０］，但并未分析其原因．

本文将两根具有相同固有频率的杆定义为对

偶，基于杆纵向动力学理论，研究其截面变化规律

和齐次边界条件． 在结构动力学研究中，人们已提

出多种对偶概念并开展了相关研究，如弹性结构与

粘弹性结构之间的对偶问题［１１］、基于辛对偶的结

构振动分析［１２］，但并未系统研究杆的固有振动对

偶问题． 本文第 １ 节研究两根变截面杆对偶应满足

的截面变化规律和齐次边界条件． 第 ２ 节限定两根

对偶杆具有相同截面积变化，研究其截面变化规律

和齐次边界条件． 第 ３ 节讨论等截面杆的对偶问

题，给出其对偶的力学意义． 第 ４ 节将上述研究和

结论推广到材料密度、弹性模量、截面积均沿轴向

变化杆的对偶问题．

１　 不同截面变化杆的对偶问题

１．１　 对偶条件

首先，考察线弹性均质材料的变截面直杆 ａ，
建立用杆的纵向位移 ｕ（ｘ，ｔ）（以下简称位移）描述

的动力学方程

ρＡ（ｘ）∂
２ｕ（ｘ，ｔ）
∂ｔ２

－ ∂
∂ｘ

［ＥＡ（ｘ）∂ｕ（ｘ，ｔ）
∂ｘ

］ ＝０， （１ａ）

其中 ρ ＞ ０ 为材料密度，Ｅ ＞ ０ 为材料弹性模量，
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ｘ∈［０，Ｌ］是以杆左端为原点、沿杆轴线的位置坐

标，Ｌ＞０ 为杆的长度，Ａ（ｘ） ＞０ 是杆的截面积函数，
它关于 ｘ∈［０，Ｌ］二阶连续可微．

杆 ａ 在其端部具有关于位移或内力的边界条

件，亦可简化为关于位移或应变的齐次边界条件

ｕ（ｘＢ，ｔ）＝ ０，

ｕｘ（ｘＢ，ｔ）≡
∂ｕ（ｘ，ｔ）

∂ｘ ｘ＝ｘＢ

＝ ０，

ｘＢ∈｛０，Ｌ｝ ．

ì

î

í

ï
ï
ï

ï
ïï

（１ｂ）

在式（１ｂ）中，两种边界与端部坐标 ｘＢ∈｛０，Ｌ｝组合

构成边界条件集合，包括四种边界条件，即固定⁃固
定，自由⁃自由，固定⁃自由，自由⁃固定． 在后续分析

中，只要出现 ｘＢ∈｛０，Ｌ｝，即意味着是上述边界条

件集合． 至此，可将式（１ａ）和式（１ｂ）作为基于位移

描述的杆 ａ 的动力学方程边值问题．
在式（１ａ）中，方括号项是杆 ａ 的纵向内力（以

下简称内力），可记为

Ｎ（ｘ，ｔ）≡ＥＡ（ｘ）∂ｕ（ｘ，ｔ）
∂ｘ

． （２）

由此将式（１ａ）改写为

∂２ｕ（ｘ，ｔ）
∂ｔ２

＝ １
ρＡ（ｘ）

∂Ｎ（ｘ，ｔ）
∂ｘ

． （３）

将式（２）对时间 ｔ 求两次偏导数并交换偏导数顺

序，再利用式（３），得到

∂２Ｎ（ｘ，ｔ）
∂ｔ２

＝ＥＡ（ｘ） ∂
∂ｘ

∂２ｕ（ｘ，ｔ）
∂ｔ２

＝ＥＡ（ｘ） ∂
∂ｘ

［ １
ρＡ（ｘ）

∂Ｎ（ｘ，ｔ）
∂ｘ

］ ． （４）

将式（４）改写为基于内力 Ｎ（ｘ，ｔ）描述的杆 ａ 的动

力学方程

ρ􀭹Ａ（ｘ）∂
２Ｎ（ｘ，ｔ）

∂ｔ２
＝ ∂
∂ｘ

［Ｅ􀭹Ａ（ｘ）∂Ｎ（ｘ，ｔ）
∂ｘ

］，

􀭹Ａ（ｘ）≡ １
ρＥＡ（ｘ）

．

ì

î

í

ï
ïï

ï
ï

（５ａ）

根据式（１ｂ）中用位移描述的杆 ａ 的边界条件，可
推导出用内力描述的边界条件集合

Ｎｘ（ｘＢ，ｔ）＝
∂
∂ｘ

［ＥＡ（ｘ）∂ｕ（ｘ，ｔ）
∂ｘ

］
ｘ＝ｘＢ

＝ ρＡ（ｘＢ）
∂２ｕ（ｘＢ，ｔ）

∂ｔ２
＝ ０，

Ｎ（ｘＢ，ｔ）＝ ＥＡ（ｘＢ）ｕｘ（ｘＢ，ｔ）＝ ０，

ｘＢ∈｛０，Ｌ｝ ．

ì

î

í

ï
ï
ï
ïï

ï
ï
ï
ï

（５ｂ）

式（５ａ）和（５ｂ）构成基于内力描述的杆 ａ 的动力学

方程边值问题，其中类比于杆 ａ 截面积函数定义了
􀭹Ａ（ｘ），它的单位是［ｍ２·ｓ２·ｋｇ－２］ ．

其次，考察由相同材料制成的杆 ｂ，其截面积

函数 􀭹Ｂ（ｘ）二次连续可微，ｘ∈［０，Ｌ］的涵义不变，
杆 ｂ 的其它参数与杆 ａ 相同． 将杆 ａ 的固定边界置

换为自由边界、自由边界置换为固定边界，作为杆

ｂ 的边界条件． 建立由位移 􀭹ｕ（ｘ，ｔ）描述的杆 ｂ 的动

力学方程边值问题

ρ􀭹Ｂ（ｘ）∂􀭹ｕ
２（ｘ，ｔ）
∂ｔ２

＝ ∂
∂ｘ

［Ｅ􀭹Ｂ（ｘ）∂􀭹ｕ（ｘ，ｔ）
∂ｘ

］，

􀭹ｕｘ（ｘＢ，ｔ）＝ ０， 􀭹ｕ（ｘＢ，ｔ）＝ ０， ｘＢ∈｛０，Ｌ｝ ．

ì

î

í

ï
ï

ïï

（６）

引入杆 ｂ 的内力

Ｎ
～
（ｘ，ｔ）＝ Ｅ􀭹Ｂ（ｘ）∂􀭹ｕ（ｘ）

∂ｘ
， （７）

类比对杆 ａ 的分析，可得到用内力 Ｎ
～
（ ｘ，ｔ）描述的

杆 ｂ 的动力学方程边值问题

ρＢ（ｘ）∂
２Ｎ

～
（ｘ，ｔ）
∂ｔ２

＝ ∂
∂ｘ

［ＥＢ（ｘ）∂Ｎ
～
（ｘ，ｔ）
∂ｘ

］，

Ｎ
～
（ｘＢ，ｔ）＝ ０， Ｎ

～
ｘ（ｘＢ，ｔ）＝ ０， ｘＢ∈｛０，Ｌ｝，

Ｂ（ｘ）≡ １
ρＥ􀭹Ｂ（ｘ）

．

ì

î

í

ï
ï
ïï

ï
ï
ïï

（８）

现取杆 ｂ 的截面积函数和类比截面积函数为

􀭹Ｂ（ｘ）＝ γ􀭹Ａ（ｘ）＝ γ
ρＥＡ（ｘ）

，

Ｂ（ｘ）＝ Ａ（ｘ）
γ

，

γ≡１［ｋｇ２·ｓ－２］ ．

ì

î

í

ï
ï
ï

ï
ï
ï

（９）

将式（９）代入式（６）和式（８），则式（６）与式（５）的
形式完全相同，式（８）与式（１）的形式也完全相同．
因此，杆 ａ 和杆 ｂ 具有相同固有频率． 在一般情况

下，􀭹Ｂ（ｘ）≠Ａ（ｘ），故称这样的杆 ａ 和杆 ｂ 为异截面

对偶（ａ ｄｕａｌ ｏｆ ｄｉｆｆｅｒｅｎｔ ｃｒｏｓｓ⁃ｓｅｃｔｉｏｎｓ）． 此外，不论

是将式（１ｂ）与式（５ｂ）进行比较，还是将式（６）与式

（８）中的边界条件作比较，均可见位移描述边界条

件和内力描述边界条件构成如下对偶边界（ａ ｄｕａｌ
ｏｆ ｂｏｕｎｄａｒｉｅｓ）：即位移固定边界对应于内力梯度为

零边界，位移自由边界对应于内力为零边界．
１．２　 异截面对偶杆及其分类

基于上述杆的异截面对偶概念和对偶边界概

念，得到如下结论：

２
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（１）固定⁃固定杆 ａ 与自由⁃自由杆 ｂ 为异截面

对偶，自由⁃自由杆 ａ 与固定⁃固定杆 ｂ 为异截面对

偶，固定⁃自由杆 ａ 与自由⁃固定杆 ｂ 为异截面对偶，
自由⁃固定杆 ａ 与固定⁃自由杆 ｂ 为异截面对偶． 应

指出，在后两种情况中，杆 ａ 和杆 ｂ 的边界对偶，固
定边界和自由边界的位置对换．

（２）异截面对偶的两种杆具有相同固有频率；
它们彼此的内力振型与位移振型相同． 若已知杆 ａ
的第 ｒ 阶位移振型 ｕｒ（ｘ），由式（２）可得到其内力振

型 Ｎｒ（ｘ）＝ ＥＡ（ｘ）∂ｕｒ（ｘ） ／ ∂ｘ，则杆 ｂ 的第 ｒ 阶位移

振型可取为 􀭹ｕｒ（ｘ）＝ Ｎｒ（ｘ）；反之，若已知杆 ｂ 的第 ｒ

阶位移振型 􀭹ｕｒ（ｘ），由式（７）和式（９）得到其内力振

型 Ｎ
～
ｒ（ｘ）＝ γＥ􀭹Ａ（ｘ）∂􀭹ｕｒ（ｘ） ／ ∂ｘ，则杆 ａ 的第 ｒ 阶位移

振型可取为 ｕｒ（ｘ）＝ Ｎ
～
ｒ（ｘ） ．

１．３　 平凡与非平凡对偶

除了上述异截面对偶，杆 ａ 和杆 ｂ 在如下两种

情况下也具有相同固有频率．
（１）镜像：即杆 ａ 及其边界条件与杆 ｂ 及其边

界条件关于截面 ｘ ＝ Ｌ ／ ２ 对称． 显然，两镜像杆的固

有频率相同，而它们的振型彼此为镜像．
（２）相似：即杆 ａ 和杆 ｂ 具有相同边界，其截面

积分别为 Ａ（ｘ）和 βＡ（ｘ），其中 β＞０． 根据变截面杆

的位移动力学方程，系数 β＞０ 不影响杆的固有振

动，即两相似杆具有相同的固有频率和振型． 在本

研究中，可将它们视为同一根杆．
镜像和相似具有如下特点：一是它们属于平凡

情况，无需对偶分析即获得上述固有振动行为；二
是两根杆彼此镜像或相似时，具有相同固有频率，
属于引言所界定的对偶；三是根据 １．２ 节所述的异

截面对偶杆的位移振型关系，它们不属于异截面对

偶；四是对于两根彼此镜像或相似的杆，若其中之

一与另一根杆构成异截面对偶，则它们均与该杆构

成异截面对偶，即镜像或相似可传递对偶信息． 基

于上述特点，本文将镜像和相似作为平凡对偶，而
将异截面对偶作为非平凡对偶．
１．４　 案例：截面积二次变化的杆

现考察变截面固定⁃固定杆 ａ，其截面积函数为

Ａ（ｘ）＝ Ａ０（１＋αｘ） ２，其中 Ａ０＞０，α＞－１ ／ Ｌ 为常数． 根

据式（１），得到由位移描述的杆 ａ 的动力学方程边

值问题

ρＡ０（１＋αｘ） ２ ∂２ｕ（ｘ，ｔ）
∂ｔ２

－ ∂
∂ｘ

［ＥＡ０（１＋αｘ） ２ ∂ｕ（ｘ，ｔ）
∂ｘ

］ ＝ ０，

ｕ（０，ｔ）＝ ０， ｕ（Ｌ，ｔ）＝ ０．

ì

î

í

ï
ï
ï

ï
ï
ï

（１０）

引入函数 ｖ（ｘ，ｔ）≡（１＋αｘ）ｕ（ｘ，ｔ），可将式（１０）转
化为［１３］

ρ ∂２ｖ（ｘ，ｔ）
∂ｔ２

－Ｅ ∂２ｖ（ｘ，ｔ）
∂ｘ２ ＝ ０，

ｖ（０，ｔ）＝ ０， ｖ（Ｌ，ｔ）＝ ０．

ì

î

í

ïï

ïï

（１１）

这是常见的等截面固定⁃固定杆的动力学方程边值

问题，其固有频率和位移振型为［９，１０］

ωｒ ＝κｒｃ０， ｖｒ（ｘ）＝ ａｒｓｉｎ（κｒｘ），

κｒ ＝
ｒπ
Ｌ
， ｒ＝ １，２，…

ì

î

í

ïï

ïï

（１２）

其中 ｃ０≡ Ｅ ／ ρ为杆的纵波波速． 变截面固定⁃固定

杆 ａ 具有与此相同的固有频率，其位移振型为

ｕｒ（ｘ）＝
ｖｒ（ｘ）
１＋αｘ

＝
ａｒｓｉｎ（κｒｘ）

１＋αｘ
， ｒ＝ １，２，…． （１３）

取变截面自由⁃自由杆 ｂ 的截面积函数为

􀭹Ｂ（ｘ）＝ γ
ρＥＡ（ｘ）

＝ γ
ρＥＡ０（１＋αｘ） ２ ． （１４）

根据异截面对偶，自由⁃自由杆 ｂ 与固定⁃固定杆 ａ
具有相同固有频率，而其位移振型可取为

　
􀭹ｕｒ（ｘ）＝ ＥＡ（ｘ）

∂ｕｒ（ｘ）
∂ｘ

＝ｂｒ［κｒ（１＋αｘ）ｃｏｓ（κｒｘ）－αｓｉｎ（κｒｘ）］，

ｂｒ≡ａｒＥＡ０ ．

ì

î

í

ï
ïï

ï
ïï

（１５）

上述结果的正确性可通过将式（１５）代入自由⁃
自由杆 ｂ 的动力学方程边值问题得以验证． 图 １ 中

实线是 α＝ ２ ／ Ｌ 时异截面对偶杆的前三阶关于最大

位移归一化振型，此时杆 ａ 的截面积左小右大，故
振型幅值左高右低；而杆 ｂ 的截面积变化相反，故
振型幅值左低右高． 作为参考，在图 １ 中用虚线给

出 α＝ ０ 时等截面杆的前三阶关于最大位移归一化

振型，它们具有镜像对称性或反对称性．

２　 相同截面变化杆的对偶问题

对于两根异截面对偶杆，若限定其具有相同的

截面积变化，它们是否在对偶边界条件下具有相同

固有频率呢？ 本节先讨论一个具体案例，再将研究

３
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图 １　 异截面对偶杆的位移振型

（实线：α＝ ２ ／ Ｌ，虚线：α＝ ０）

Ｆｉｇ．１　 Ｔｈｅ ｄｉｓｐｌａｃｅｍｅｎｔ ｍｏｄｅ ｓｈａｐｅｓ ｏｆ ａ ｄｕａｌ ｏｆ ｂｅａｍｓ ｗｉｔｈ ｄｉｆｆｅｒｅｎｔ

ｃｒｏｓｓ⁃ｓｅｃｔｉｏｎｓ （ｓｏｌｉｄ ｌｉｎｅｓ： α＝ ２ ／ Ｌ， ｄａｓｈｅｄ ｌｉｎｅｓ： α＝ ０）

推广到一般情况．
２．１　 案例：截面积指数变化的杆

首先，考察图 ２ 所示的固定⁃固定杆 ａ，其截面

积为图 ２ 坐标系中的指数函数 Ａ（ｘ）＝ Ａ０ｅｘｐ（αｘ），
其中 Ａ０＞０，α≥０ 为常数． 此时，杆的两端截面积分

别为 Ａ（０）＝ Ａ０ 和 Ａ（Ｌ）＝ Ａ０ｅｘｐ（αＬ） ． 再考察图 ２

中的自由⁃自由杆 ｂ，取其截面积 􀭹Ｂ（ｘ）函数满足式

（９），即

􀭹Ｂ（ｘ）＝ γ􀭹Ａ（ｘ）＝ γ
ρＥＡ（ｘ）

＝ γ
ρＥＡ０

ｅｘｐ（－αｘ），（１６）

则自由⁃自由杆 ｂ 与固定⁃固定杆 ａ 构成异截面对

偶． 将杆 ｂ 的镜像记为杆 ｃ，它传递杆 ｂ 携带的对

偶信息，即自由⁃自由杆 ｃ 与固定⁃固定杆 ａ 构成异

截面对偶． 由于杆 ｃ 在图 ２ 坐标系中的截面积为

　
Ｂ^（ｘ）≡􀭹Ｂ（Ｌ－ｘ）＝ γ

ρＥＡ（Ｌ）
ｅｘｐ（αｘ）＝ Ａ（ｘ）

β
，

β≡
ρＥＡ０Ａ（Ｌ）

γ
＞０．

ì

î

í

ï
ïï

ï
ï

（１７）

这表明，杆 ｃ 和杆 ａ 具有相似的截面积变化规律，
其差异仅是系数 １ ／ β． 若将杆 ｃ 的截面积乘以 β 得

到自由⁃自由杆 ｄ，则杆 ｄ 和杆 ｃ 相似，具有相同固

有振动． 此时，固定⁃固定边界杆 ａ 与自由⁃自由杆 ｄ
具有相同固有频率． 由于固定⁃固定杆 ａ 与自由⁃自

由杆 ｄ 具有相同截面积，故称它们为同截面对偶（ａ
ｄｕａｌ ｏｆ ｉｄｅｎｔｉｃａｌ ｃｒｏｓｓ⁃ｓｅｃｔｉｏｎｓ） ．

图 ２　 同截面对偶条件下的固定⁃固定杆 ａ，

自由⁃自由杆 ｂ 及其镜像杆 ｃ 的截面积函数对比

Ｆｉｇ．２　 Ａ ｃｏｍｐａｒｉｓｏｎ ｏｆ ｃｒｏｓｓ⁃ｓｅｃｔｉｏｎａｌ ａｒｅａｓ ａｍｏｎｇ ｆｉｘｅｄ⁃ｆｉｘｅｄ ｒｏｄ ａ，

ｆｒｅｅ⁃ｆｒｅｅ ｒｏｄ ｂ ａｎｄ ｉｔｓ ｍｉｒｒｏｒ ｒｏｄ ｃ ｕｎｄｅｒ ｔｈｅ ｄｕａｌ ｃｏｎｄｉｔｉｏｎ

ｏｆ ｉｄｅｎｔｉｃａｌ ｃｒｏｓｓ⁃ｓｅｃｔｉｏｎｓ

对于上述截面积为指数函数的固定⁃固定杆，
郭树起和杨绍普给出其固有频率和位移振型［１４］

ωｒ ＝ ｃ０ ［κｒ
２＋（ ａ

２
） ２］ ，ｃ０≡

Ｅ
ρ
， κｒ ＝

ｒπ
Ｌ
，

ｕｒ（ｘ）＝ ａｒｅｘｐ（－
αｘ
２
）ｓｉｎ（κｒｘ）， ｒ＝ １，２，…

ì

î

í

ï
ïï

ï
ïï

（１８）

由此得到其内力振型

Ｎｒ（ｘ）＝ ＥＡ（ｘ）
∂ｕｒ（ｘ）

∂ｘ

＝ｂｒｅｘｐ（
αｘ
２
）［κｒｃｏｓ（κｒｘ）－

α
２
ｓｉｎ（κｒｘ）］，

ｂｒ≡ａｒＥＡ０， ｒ＝１，２，…

ì

î

í

ï
ï
ï

ï
ï
ï

（１９）

根据固定⁃固定杆 ａ 与自由⁃自由杆 ｂ 构成异截面对

偶，自由⁃自由杆的固有频率为式 （ １８） 中的 ωｒ，
ｒ＝ １，２，…．将式（１９）作为自由⁃自由杆 ｂ 的位移振

型 􀭹ｕｒ（ｘ），通过把坐标 ｘ 代换为 Ｌ－ｘ（或把 α 代换为

－α），得到其镜像杆 ｃ 的位移振型

ｕ^ｒ（ｘ）＝ ｂｒｅｘｐ（－
αｘ
２
）［κｒｃｏｓ（κｒｘ）＋

α
２
ｓｉｎ（κｒｘ）］，

ｒ＝１，２，…

ì

î

í

ïï

ïï

（２０）

这正是自由⁃自由杆 ａ 的位移振型［１４］ ．
图 ３ 给出上述固定⁃固定杆和自由⁃自由杆的

前三阶关于最大位移归一化的振型． 其中，实线是

α＝ ２ ／ Ｌ 时变截面杆的振型，其镜像非对称，因为此

４
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时杆右端比左端粗． 作为参考，在图 ３ 中用虚线给

出 α＝ ０ 时等截面杆的振型，它们具有镜像对称性

或反对称性．

图 ３　 同截面对偶杆的位移振型

（实线：α＝ ２ ／ Ｌ，虚线：α＝ ０）

Ｆｉｇ．３　 Ｔｈｅ ｄｉｓｐｌａｃｅｍｅｎｔ ｍｏｄｅ ｓｈａｐｅｓ ｏｆ ａ ｄｕａｌ ｏｆ ｂｅａｍｓ ｗｉｔｈ ｉｄｅｎｔｉｃａｌ

ｃｒｏｓｓ⁃ｓｅｃｔｉｏｎｓ（ｓｏｌｉｄ ｌｉｎｅｓ： α＝ ２ ／ Ｌ， ｄａｓｈｅｄ ｌｉｎｅｓ： α＝ ０）

２．２　 对偶条件

将第 ２．１ 节的讨论作推广，可得到杆的同截面

对偶条件：存在常数 β＞０，使其截面积 Ａ（ｘ）满足

Ａ（ｘ）＝ βＢ^（ｘ）＝ β􀭹Ｂ（Ｌ－ｘ）＝ βγ
ρＥＡ（Ｌ－ｘ）

． （２１）

将式（２１）改写为

Ａ（ｘ）
βγ ／ ρＥ

Ａ（Ｌ－ｘ）
βγ ／ ρＥ

＝ １． （２２）

这等价为

ｌｎ［ Ａ（ｘ）
βγ ／ ρＥ

］＋ｌｎ［ Ａ（Ｌ
－ｘ）

βγ ／ ρＥ
］ ＝ ０． （２３）

引入以新变量 ｙ 表示的函数

ｆ（ｙ）≡ｌｎ［Ａ（ｙ
＋Ｌ ／ ２）
βγ ／ ρＥ

］，

ｙ≡ｘ－ Ｌ
２
∈［－ Ｌ

２
， Ｌ
２
］，

ì

î

í

ï
ïï

ï
ïï

（２４）

用函数 ｆ（ｙ）来表达式（２３），得到 ｆ（ｙ）应满足的奇

函数条件

ｆ（ｙ）＋ｆ（－ｙ）＝ ０． （２５）
由式（２４）解出

Ａ（ｘ）＝ βγ
ρＥ

ｅｘｐ［ ｆ（ｘ－ Ｌ
２
）］， ｘ∈［０，Ｌ］ ． （２６）

选择任意的光滑奇函数 ｆ（ｙ），ｙ∈［－Ｌ ／ ２，Ｌ ／ ２］，由
式（２６）给出的截面积函数 Ａ（ｘ）均满足同截面对偶

条件（２１） ． 不难验证，第 ２．１ 节的杆截面积函数具

有满足式（２６）的最简形式．
２．３　 同截面对偶杆

现考察截面积函数满足式（２６）的固定⁃固定杆

与自由⁃自由杆的对偶问题． 为了直观地说明式

（２６）的功能，选择光滑奇函数

ｇ（ｙ）≡αｓｉｎ（３πｙ
Ｌ

）， ｙ∈［－ Ｌ
２
， Ｌ
２
］，

α＞０， β≡
ρＥＡ２

０

γ
，

ì

î

í

ï
ïï

ï
ïï

（２７）

将上式代入式（２６）作为杆 ａ 的截面积函数

Ａ（ｘ）＝ Ａ０ｅｘｐ［αｃｏｓ（
３πｘ
Ｌ

）］， Ａ０＞０， α＞０． （２８）

容易验证式（２８）满足条件（２１） ． 图 ４ 给出三种杆的

截面积函数，即固定⁃固定杆 ａ 的截面积函数Ａ（ｘ），
自由⁃自由杆 ｂ 的截面积函数 􀭹Ｂ（ｘ）＝ γ􀭹Ａ（ｘ），以及由

杆 ｂ 镜像得到的自由⁃自由杆 ｃ 的截面积函数 Ｂ^
（ｘ）＝ Ａ（ｘ） ／ β． 再将杆 ｃ 的截面积乘以 β，得到与杆

ｃ 相似的自由⁃自由杆 ｄ． 此时，杆 ａ 与杆 ｄ 构成对

偶，且具有相同截面积，故杆 ａ 在固定⁃固定边界和

自由⁃自由边界下构成同截面对偶．

图 ４　 同截面对偶条件下的固定⁃固定杆 ａ，自由⁃自由杆 ｂ 及其

镜像杆 ｃ 的截面函数对比

Ｆｉｇ．４　 Ａ ｃｏｍｐａｒｉｓｏｎ ｏｆ ｃｒｏｓｓ⁃ｓｅｃｔｉｏｎａｌ ａｒｅａｓ ａｍｏｎｇ ｆｉｘｅｄ⁃ｆｉｘｅｄ ｒｏｄ ａ，

ｆｒｅｅ⁃ｆｒｅｅ ｒｏｄ ｂ ａｎｄ ｉｔｓ ｍｉｒｒｏｒ ｒｏｄ ｃ ｕｎｄｅｒ ｔｈｅ ｄｕａｌ ｃｏｎｄｉｔｉｏｎ ｏｆ

ｉｄｅｎｔｉｃａｌ ｃｒｏｓｓ⁃ｓｅｃｔｉｏｎｓ

５
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２．４　 非同截面对偶杆

根据杆的截面变化是否满足同截面对偶条件，
可分如下两种情况讨论．

（１）对于截面积函数满足式（２６）的固定⁃自由

杆 ａ，其异截面对偶是自由⁃固定杆 ｂ，杆 ｂ 的镜像

是固定⁃自由杆 ｃ． 此时，固定⁃自由杆 ｃ 与固定⁃自
由杆 ａ 的唯一可能区别是端部截面积不同． 根据第

１．３ 节的讨论，杆 ａ 和杆 ｃ 相似，应视为同一根杆．
因此，固定⁃自由杆只能与其自身构成同截面对偶，
属于平凡对偶． 同理，自由⁃固定杆也如此．

（２）在实践中，许多杆的截面积函数不满足同

截面对偶条件（２６） ． 例如，第 １．４ 节中的截面积二

次变化杆不具有式（２６）的形式，故不存在同截面

对偶． 已有研究表明［１３］，这样的杆在固定⁃固定边

界和自由⁃自由边界下的固有频率不同，即非同截

面对偶．

３　 等截面杆的对偶问题

对于等截面杆，Ａ（ｘ）≡Ａ０＞０，其动力学方程与

截面积函数无关，即杆 ａ 的位移动力学方程边值问

题（１）和内力动力学方程边值问题（５）可简化为

ρ ∂２ｕ（ｘ，ｔ）
∂ｔ２

－Ｅ ∂２ｕ（ｘ，ｔ）
∂ｘ２ ＝ ０，

ｕ（ｘＢ，ｔ）＝ ０， ｕｘ（ｘＢ，ｔ）＝ ０， ｘＢ∈｛０，Ｌ｝ ．

ì

î

í

ïï

ïï

（２９）

ρ ∂２Ｎ（ｘ，ｔ）
∂ｔ２

－Ｅ ∂２Ｎ（ｘ，ｔ）
∂ｘ２ ＝ ０，

Ｎｘ（ｘＢ，ｔ）＝ ０， Ｎ（ｘＢ，ｔ）＝ ０， ｘＢ∈｛０，Ｌ｝ ．

ì

î

í

ïï

ïï

（３０）

根据条件（９），杆 ｂ 的位移动力学方程边值问题

（６）和内力动力学方程边值问题（８）可简化为

ρ ∂２􀭹ｕ（ｘ，ｔ）
∂ｔ２

－Ｅ ∂２􀭹ｕ（ｘ，ｔ）
∂ｘ２ ＝ ０，

􀭹ｕｘ（ｘＢ，ｔ）＝ ０， 􀭹ｕ（ｘＢ，ｔ）＝ ０， ｘＢ∈｛０，Ｌ｝ ．

ì

î

í

ïï

ïï

（３１）

ρ ∂２Ｎ
～
（ｘ，ｔ）
∂ｔ２

－Ｅ ∂２Ｎ
～
（ｘ，ｔ）
∂ｘ２ ＝ ０，

Ｎ
～
（ｘＢ，ｔ）＝ ０， Ｎ

～
ｘ（ｘＢ，ｔ）＝ ０， ｘＢ∈｛０，Ｌ｝ ．

ì

î

í

ï
ï

ïï

（３２）

显然，式（２９）与式（３２）的形式一致，式（３０）与式

（３１）的形式一致． 由于上述边值问题不含截面积

函数，可认为杆 ａ 和杆 ｂ 是同一根杆，改变杆的边

界条件即可获得同截面对偶． 因此有如下结论：
（１）等截面固定⁃固定杆与自由⁃自由杆对偶；若

不计自由⁃自由杆的刚体运动，它们具有相同的固有

频率 ωｒ ＝κｒ Ｅ ／ ρ，κｒ ＝ ｒπ ／ Ｌ，ｒ ＝ １，２，…． 由于等截面

固定⁃固定杆的位移振型为 ｕｒ（ｘ）＝ ａｒｓｉｎ（κｒｘ），其内

力振型为 Ｎｒ（ ｘ） ＝ ｂｒｃｏｓ（κｒｘ），而这正是等截面自

由⁃自由杆的位移振型 􀭹ｕｒ（ｘ）；反之亦然． 图 ３ 中的

虚线分别给出了这两种杆的前三阶位移振型．
（２）等截面固定⁃自由杆与自由⁃固定杆满足同

截面对偶条件，但它们彼此镜像，属于平凡对偶．
注解 １：自由⁃自由杆与固定⁃固定杆的边界条

件不同，很容易理解它们的位移振型不同． 但为何

两者具有相同的固有频率呢？ 从能量角度看，虽然

它们的位移振型不同，但其固有振动所携带的弹性

势能和动能之比是相同的． 例如，自由⁃自由杆的第

ｒ 阶固有振动的参考动能和势能分别为

Ｔｒｅｆ ＝
ρＡ
２ ∫

Ｌ

０
􀭹ｕ２
ｒ（ｘ）ｄｘ

＝
ρＡｂ２

ｒ

２ ∫Ｌ
０
ｃｏｓ２（κ ｒｘ）ｄｘ ＝

ρＡＬｂ２
ｒ

４
，

Ｖ ＝ ＥＡ
２ ∫

Ｌ

０
［
ｄ􀭹ｕｒ（ｘ）

ｄｘ
］ ２ｄｘ

＝
ＥＡｂ２

ｒ κ ２
ｒ

２ ∫Ｌ
０
ｓｉｎ２（κ ｒｘ）ｄｘ ＝

ＥＡＬｂ２
ｒ κ ２

ｒ

４
．

ì

î

í

ï
ï
ï
ï
ïï

ï
ï
ï
ï
ïï

（３３）

将式（３３）代入 Ｒａｙｌｅｉｇｈ 商，得到

ωｒ ＝
Ｖ
Ｔｒｅｆ

＝κｒ
Ｅ
ρ
， ｒ＝ １，２，…． （３４）

这也正是固定⁃固定杆的第 ｒ 阶固有频率．
注解 ２：若基于辛力学体系研究上述问题，则

位移与力互为对偶变量，即固定⁃固定杆的位移边

界条件与自由⁃自由杆的力边界条件彼此对偶． 此

时同一根杆受到对偶力学约束，故其动力学行为具

有对偶性．

４　 材料特性沿轴向变化杆的对偶问题

本节将第 １～２ 节的研究和结论推广到材料密

度和弹性模量均随位置坐标 ｘ 变化的变截面杆，并
以案例说明其固有振动对偶的可行性．
４．１　 动力学方程边值问题

考察材料密度、弹性模量、截面积均随位置坐

标 ｘ 变化的杆，其自由振动满足动力学方程

　 ρ（ｘ）Ａ（ｘ）∂
２ｕ（ｘ，ｔ）
∂ｔ２

－ ∂
∂ｘ

［Ｅ（ｘ）Ａ（ｘ）∂ｕ（ｘ，ｔ）
∂ｘ

］ ＝０，

（３５ａ）
其中 Ａ（ｘ）＞０，ρ（ｘ） ＞０ 和 Ｅ（ｘ） ＞０，而杆的齐次边

界条件集合为

ｕ（ｘＢ，ｔ）＝ ０， ｕｘ（ｘＢ，ｔ）＝ ０， ｘＢ∈｛０，Ｌ｝ ． （３５ｂ）
引入关于位置坐标的变换［１５］

６
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ｙ ≡ ∫ｘ
０

ρ（ ｓ）
Ｅ（ ｓ）

ｄｓ． （３６）

根据 ｄｙ ／ ｄｘ＝ ρ（ｘ） ／ Ｅ（ｘ） ＞０，式（３６）关于 ｘ 单调

递增，故存在逆变换 ｘ≡ｘ（ ｙ） ． 将式（３６）代入式

（３５ａ），得到

ρ（ｘ）
Ｅ（ｘ）

｛Ａ（ｘ） ρ（ｘ）Ｅ（ｘ） ∂２ｕ（ｙ，ｔ）
∂ｔ２

－

　 　 ∂
∂ｙ

［Ａ（ｘ） ρ（ｘ）Ｅ（ｘ） ∂ｕ（ｙ，ｔ）
∂ｙ

］｝ ＝０， （３７）

通过逆变换 ｘ≡ｘ（ｙ），可将上式改写为

Ａ（ｙ）∂
２ｕ（ｙ，ｔ）
∂ｔ２

－ ∂
∂ｙ

［Ａ（ｙ）∂ｕ（ｙ，ｔ）
∂ｙ

］ ＝０，

Ａ（ｙ）≡Ａ（ｘ（ｙ）） ρ（ｘ（ｙ））Ｅ（ｘ（ｙ）） ，

ì

î

í

ï
ï

ïï

（３８ａ）

其中 Ａ（ ｙ）定义为截面特性函数（ ａ ｃｒｏｓｓ⁃ｓｅｃｔｉｏｎａｌ
ｐｒｏｐｅｒｔｙ ｆｕｎｃｔｉｏｎ），它的单位是 ［ ｋｇ· ｓ－１ ］． 将式

（３６）代入式（３５ｂ），得到相应的齐次边界条件集合

ｕ（ｙＢ，ｔ） ＝ ０， ｕｙ（ｙＢ，ｔ） ＝ ０，

ｙＢ ∈ ｛０，Ｌ｝， Ｌ ≡ ∫Ｌ
０

ρ（ｘ）
Ｅ（ｘ）

ｄｘ．

ì

î

í

ï
ï

ïï

（３８ｂ）

由于式（３８）与式（１）具有相同形式，故可沿用第

１～２ 节的方法研究杆在固有振动中的对偶． 根据

式（３５）与式（３８）中齐次边界条件的一致性，只需

研究截面特性函数的对偶条件．
４．２　 对偶条件

设杆 ａ 的材料密度、弹性模量和截面积分别为

ρａ（ｘ），Ｅａ（ｘ）和 Ａ（ｘ），杆 ｂ 的材料密度、弹性模量

和截面积分别为 ρｂ（ｘ），Ｅｂ（ｘ）和 􀭹Ｂ（ｘ） ． 它们的截

面特性函数为

Ａ（ｙ）≡Ａ（ｘ（ｙ）） ρａ（ｘ（ｙ））Ｅａ（ｘ（ｙ）） ，

Ｂ（ｙ）≡􀭹Ｂ（ｘ（ｙ）） ρｂ（ｘ（ｙ））Ｅｂ（ｘ（ｙ）） ．
{ （３９）

根据式（９）得到杆 ａ 和杆 ｂ 的异截面对偶条件

Ａ（ｙ）Ｂ（ｙ）＝ γ． （４０）
根据式（２６）得到它们的同截面对偶条件

Ａ（ｙ）＝ βγ ｅｘｐ［ ｆ（ｙ－ Ｌ
２
）］， ｙ∈［０，Ｌ］ ． （４１）

４．３　 案例：弹性模量平方变化的杆

设杆的截面积定常、材料密度定常，仅材料弹

性模量沿轴向呈平方变化，即
Ａ（ｘ）≡Ａ０＞０， ρ（ｘ）≡ρ０＞０，

Ｅ（ｘ）≡Ｅ０（１＋ηｘ） ２， Ｅ０＞０， η＞０．{ （４２）

将式（４２）代入式（３６），得到

　

ｙ ＝ １
ｃ０
∫ｘ

０

１
１ ＋ ηｓ

ｄｓ ＝ ｌｎ（１ ＋ ηｘ）
ｃ０η

∈［０，Ｌ］，

Ｌ ≡ ｌｎ（１ ＋ ηＬ）
ｃ０η

， ｃ０ ≡
Ｅ０

ρ０
．

ì

î

í

ï
ïï

ï
ïï

（４３）

由式（４３）解出

ｘ＝
ｅｘｐ（ｃ０ηｙ）－１

η
， （４４）

进而得到截面特性函数

Ａ（ｙ）≡Ａ０ Ｅ０ρ０［１＋ηｘ（ｙ）］ ２

＝Ａ０ ρ０Ｅ０ ｅｘｐ（ｃ０ηｙ） ． （４５）
不难验证，式（４５）满足等截面对偶条件（４１） ． 事实

上，此处的截面特性函数与第 ２．１ 节案例的截面积

函数形式相同，故杆在固定⁃固定边界和自由⁃自由

边界下具有相同固有频率．
注解 ３：对于材料密度、弹性模量、截面积均随

ｘ 变化的杆，通常难以像本案例这样获得 ｘ（ｙ）的解

析表达式，进而得到截面特性函数表达式． 此时，需
通过数值方法获得对偶条件．

５　 结论

对于线弹性均质材料的变截面杆，给定其截面

积函数和齐次边界条件，可确定另一根变截面杆的

截面积和齐次边界条件，使两根杆成为异截面对

偶． 即它们具有不同的截面变化，但具有相同固有

频率，而两者的位移振型互为位置坐标的导数． 此

时，固定⁃固定杆与自由⁃自由杆对偶，固定⁃自由杆

与自由⁃固定杆对偶．
若要上述两根对偶杆成为等截面对偶，即它们

具有相同的截面变化并具有相同固有频率，文中给

出了这类杆的截面积变化规律． 此时，固定⁃固定杆

与自由⁃自由杆保持对偶，而固定⁃自由杆和自由⁃固
定杆退化为彼此镜像． 等截面杆作为满足上述截面

积变化规律的特例，自然具有上述性质．
对于材料特性随轴向变化的变截面杆，可引入

坐标变换，将其位移动力学方程边值问题转化为形

如材料特性不变的变截面杆位移动力学方程边值

问题，进而获得异截面 ／同截面对偶条件．
由于线弹性材料制成的轴与杆具有相同形式

的动力学方程和边界条件，故本文方法和结论适用

于轴的扭转固有振动对偶问题．
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