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Fig.1  Dynamics model of planetary gear
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Table 1  Basic parameters of planetary gear system"*!
Parameters s n r ¢
z 20 29 79 —
m/mm 2.25
d/mm 42.29 61.31 167.03 113
I/(kg-mm?) 146 297 17440 11178
al(°) 20
B/mm 25 28 25 25
h, 1
c, 0.25
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CHAOS ANALYSIS OF PLANETARY GEAR TRANSMISSION
SYSTEM BASED ON LARGEST LYAPUNOV EXPONENT *

Wang Jingyue'* Liu Ning' Wang Haotian®
(1.School of Automobile and Transportation, Shenyang Ligong University, Shenyang, 110159, China)
(2.State Key Laboratory of Mechanical Transmissions, Chongqing University, Chongqing , 400044, China)
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Abstract To explore the chaotic characteristics of a planetary gear system, a centralized-parameter model of torsional
vibration of the planetary gear system was established, which considers several nonlinear factors, such as time-varying
meshing stiffness, backlash and comprehensive meshing error. The Runge-Kutta scheme was used to solve the equations
of motion. The bifurcation diagram and the largest Lyapunov exponent diagram were used to reveal bifurcation and chaos
characteristics of the system with respect to various parameters. The numerical simulations showed that with the increase
of excitation frequency, the motion of the system firstly changes into the intermittent chaos from periodic motion, and
then returns to the periodic motion from the chaos through reverse doube-period bifurcation. As the frequency increases
further, the system again undergoes chaotic motion through jump shock and doube-period bifurcation, and finally stabi-
lizes to the period-1 motion through inverse doube-period bifurcation. With the increase of damping ratio, the motion
shifts from chaos to periodic motion through inverse doube-period bifurcation. In the cases of increasing the integrated
meshing error, the backlash, or the stiffness, the motion changes from periodic motion to chaos by doube-period bifurca-
tion. With the increase of excitation amplitude, the motion moves from chaos to periodic motion through jump shock and
inverse doube-period bifurcation. The results of this study provide a theoretical guideline for the parameter design of a

planetary gear system.

Key words planetary gear system, nonlinear dynamics, bifurcation, chaos, largest Lyapunov exponent
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