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摘要 为了分析行星齿轮系统的混沌特性，基于集中参数理论，考虑时变啮合刚度、齿隙和综合啮合误差等

非线性因素，建立行星齿轮系统扭转振动模型 .采用Runge-Kutta数值解法求解振动方程，利用分岔图和最大

Lyapunov指数图分析系统随各种参数变化的分岔与混沌特性 .数值仿真得出：随激励频率的增加，系统首先

从周期运动进入阵发性混沌，再通过逆倍化分岔由混沌回到周期运动，之后再次通过跳跃激变和倍化分岔由

周期运动进入混沌运动，最后通过逆倍化分岔稳定到 1周期运动 .随阻尼比的增加，系统通过逆倍化分岔由

混沌运动进入周期运动 .随综合啮合误差幅值、齿隙和刚度幅值分别增加的三种情况下，系统都是通过倍化

分岔由周期运动进入混沌运动 .随荷载的增加，系统通过跳跃激变和逆倍化分岔由混沌运动进入周期运动 .
以上分析结果可为行星齿轮系统参数设计提供理论依据 .
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引言

齿轮系统是应用广泛的动力传动装置，其振动

和噪声问题也尤为突出，吸引了国内外大量学者对

其非线性动力学特性进行研究［1-6］.
在现有研究文献中，很多学者采用相图和

Poincaré截面结合的方法对系统进行定性分析，而

采用 Lyapunov指数可以对系统进行定量分析 .李
华等针对单对齿轮系统，利用 Lyapunov指数来判

别系统中的混沌吸引子，说明其可以作为判定齿轮

系统运动状态的指标［7］.王晓笋等建立含侧隙的齿

轮系统动力学模型，分析系统随侧隙变化的分岔图

和最大Lyapunov指数图［8］.Hou等建立行星齿轮-转
子系统的非线性分析模型，用分岔图和最大李雅普

诺夫指数来说明系统的非线性响应［9］.向铃等建立

了平移扭转耦合的齿轮系统动力学模型，基于

Lyapunov指数分析系统随激励参数变化的动力学

特性［10］.林何等建立含间隙和误差的齿轮非线性振

动模型，采用 Lyapunov指数和关联维数定量表述

系统相空间吸引子的数值特性［11］.
对于齿轮系统混沌特性的研究，综合分析上述

研究文献，多数为单对齿轮副的研究，而行星齿轮

的模型研究很少，其模型构件较多，动力学特性也

会更加复杂 .因此，本文建立考虑啮合刚度、误差和

齿隙等非线性因素的行星齿轮传动系统振动模型，

采用数值方法求解，利用非线性分析方法，结合分

岔图和最大李雅普诺夫指数（Largest Lyapunov
Exponents，LLE）对行星齿轮系统的混沌特性进行

分析 .
1 系统动力学建模

如图 1所示，定、动坐标系分别为 on xn yn、Oxy，

基于集中参数理论建立的行星齿轮扭转动力学模

型，假定逆时针旋转为正，不考虑轴承间隙等非线

性，每个行星轮的质量和转动惯量相同，同类型构

件齿隙、综合啮合误差和阻尼比等参数也相同，啮
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合副的接触面简化为弹簧和阻尼器连接，c代表行

星架、r代表齿圈、s代表太阳轮、n代表第 n个行星

轮 (n = 1，2，3⋯N )，uc、ur、us、un分别表示上述构件

的扭转位移 .

采用牛顿定律建立行星齿轮系统动力学微分

方程：
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（1）
式中，令 j = s、c、r、n，i = sn、rn，sn为外啮合副；rn为

内啮合副；Ij为转动惯量；rj为基圆半径；T1为输入

扭矩；T2为输出扭矩 .
通过石川公式计算齿轮副的啮合刚度［12］，时变

啮合刚度随时间周期性变化，通过 Fourier级数展

开，取谐波基频部分：

ki ( )t = kiav (1 + k cos (ωm t + ϕ ) ) （2）
式中，kiav为平均啮合刚度；k为刚度系数；ϕ为刚度

相位角；ωm为激励频率 .
综合啮合误差主要为制造误差和安装误差，可

以表示为正弦函数的形式：

ei (t) = E sin (ωm t + γ ) （3）
式中，E为啮合误差幅值；γ为误差相位角 .

齿轮副的啮合阻尼与啮合刚度相关，可以表

示为：

ci = 2ζ kiav / (1/Ms + 1/Mn ) （4）
式中，ζ为阻尼比，取值范围为 0.03~0.17［13］；M为等

效质量，M = I r2.
齿侧间隙以啮合线方向为度量值，采用分段函

数的形式，如图 2所示，齿轮副间隙非线性位移函

数可以表示为：

f ( δi ) =
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δi - b δi > b
0 || δi ≤ b
δi + b δi < -b

（5）

式中，b为1 2齿隙 .

为了消除刚体位移和使系统方程数目减少实

现降维，引入内外啮合副的相对位移 δ：

{δsn = us - uc cos (αsn ) + un + esnδrn = ur - uc cos (αrn ) - un + ern （6）
通过引入无量纲时间变量 τ，无量纲激励频率Ω，位

移尺度 bc，时间尺度ωn，可以对相同量纲尺度下的

结果进行无量纲化比较分析 .令 τ = ωn t，则 Ω =
ωm ωn，Ms = Is r2s，Mn = In r2n，

-δ i = δi bc，-δi
∙ =

δi bcωn，
-δi
∙∙ = δi bcω2

n，ωn= ksn ( 1 Ms+1 Mn ) .
令 z1 = -δ sn，z2 = -δ

∙
sn，z3 = -δ rn，z4 = -δ

∙
rn，则得到系

统的状态方程为：

图1 行星齿轮动力学模型

Fig.1 Dynamics model of planetary gear
 if 

ib ib

 
图2 齿侧间隙非线性函数

Fig.2 Nonlinear function of backlash
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2 系统的分岔与混沌特性分析

采用Runge-Kutta法求解系统状态方程（4），由

于内外啮合副的相对位移振动特性相同，以太阳轮

和行星轮的无量纲相对位移 -δ sn为例进行分析 .行
星齿轮系统的基本参数如表 1所示［14］，其中，z为齿

数，m为模数，d为基圆直径，I为转动惯量，α为压

力角，B为齿宽，ha为齿顶高系数，ca为顶隙系数 .由

系统的基本参数计算得到的基准参数如下：ksnav=
4.37×108N/m，krnav=5.65×108N/m，k=0.25，φ=0，b =
50μm，E=3μm，γ=0，ζ=0.088，T1=100N·m.
2.1 系统随激励频变化的分岔与混沌特性

以无量纲激励频率Ω为变化参数，得到系统的

分岔图和 LLE图，如图 3所示 .从图 3中可以看出，

随着Ω的增加，系统首先为周期运动，在此区域伴

随有短暂阵发性混沌，对应 LLE图中有正值区域，

 

 

 

 

图3 系统随Ω变化的分岔图和LLE图

Fig.3 Bifurcation diagram and LLE diagram of the system with Ω
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然后系统完全进入混沌运动，之后系统再次进入周

期运动，途径为逆倍化分岔，在高频区域的周期运

动发生倍化分岔，最后稳定在 1周期运动，同时在

此期间也夹杂几处混沌运动 .当Ω在［0，0.76］区间

时，系统为 1周期运动；当Ω增加到 0.78时，系统发

生Hopf分岔进入 2周期运动；当Ω增加到 0.88时，

系统为 4周期运动，之后系统暂时经激变进入阵发

性混沌，对应LLE值为正；当Ω在［1.04，1.14］区间

时，系统为 2周期运动，状态改变途径为跳跃激变；

当Ω在［1.14，1.52］区间时，系统为混沌运动状态，

LLE值为正，呈先增后减趋势；当Ω在［1.52，2.18］
区间时，系统状态为混沌运动→4周期运动→2周
期运动→1周期运动；当Ω在［2.18，2.28］区间时，

系统发生跳跃激变，由4周期跳跃为2周期；当Ω在

［2.28，2.7］区间时，系统主要为 8周期运动，伴随短

暂的阵发性混沌，对应LLE图在正值区域有几处尖

峰；当Ω在［2.7，2.94］区间时，系统为 2周期运动；

当Ω在［2.94，4］区间时，系统锁相为1周期运动 .
2.2 系统随阻尼比变化的分岔与混沌特性

取激励频率Ω = 1，以阻尼比 ζ为变化参数，得

到系统的分岔图和LLE图，如图 4所示 .从图 4可以

看出，随着 ζ的增加，系统开始的混沌特性明显，在

状态临界点处系统状态复杂，最后系统由逆倍化分

岔进入周期运动，符合增大阻尼可以使系统摆脱混

沌，从而使系统趋于稳定 .当 ζ在［0.07，0.093］区间

时，系统主要为混沌运动，同时伴有阵发性混沌和

周期窗口，对应的LLE值在正负区域之间变化；当 ζ

在［0.093，0.106］区间时，系统经逆倍化分岔进入 4
周期运动，LLE值为负，呈减小趋势；当 ζ继续增加

到0.108时，系统最后稳定在2周期运动 .

2.3 系统随综合误差幅值变化的分岔与混沌特性

取Ω = 1，以误差幅值E为变化参数，得到系统

的分岔图和 LLE图，如图 5所示 .从图 5可以看出，

随着E的增加，系统开始为单周期运动，之后为逐

渐倍化分岔多倍周期运动，最后进入混沌运动，同

时伴有狭窄的周期或拟周期窗口 .当 E在［0，1.4］
区间时，系统为 1周期运动，LLE值为负；当 E在

［1.4，2.04］区间时，系统为 2周期运动，在此区间，

当E为 1.5时，发生跳跃激变；当E在［2.04，2.06］区

间时，系统暂时为拟 2周期运动，LLE值为 0；当 E
在［2.08，2.22］区间时，系统为多倍周期运动分岔

行为，6周期运动→12周期运动→24周期运动；当

E在［2.24，3］区间时，系统混沌特性明显，同时混

沌区域中周期窗口不明显，说明系统已处于不稳定

状态，符合实际误差变大，系统混沌振动特性也随

之增强 .

表1 行星齿轮系统基本参数[14]

Table 1 Basic parameters of planetary gear system[14]

Parameters
z

m/mm
d/mm

I/（kg·mm2）
α/（∘）
B/mm
ha
ca

s

20
2.25

42.29
146

20
25

1
0.25

n

29

61.31
297

28

r

79

167.03
17440

25

c

—

113
11178

25

Z 1

 

 

 

 

图4 系统随 ζ变化的分岔图和LLE图

Fig 4 Bifurcation diagram and LLE diagram of the system with ζ
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2.4 系统随荷载变化的分岔与混沌特性

取激励频率Ω = 1，以荷载T为变化参数，得到

系统的分岔图和LLE图，如图 6所示 .从图 6中可以

看出，随着T的增加，系统开始的混沌状态明显，分

岔行为模糊，状态改变为跳跃激变和逆倍化分岔，

系统的周期运动区间也存在两处不稳定的混沌区

域，LLE图中为两处尖峰，最后系统稳定在单周期

运动 .当 T在［0，70］区间时，系统为混沌运动状

态，LLE值为正；当T增加到 75时，系统由混沌运动

逆倍化分岔为 2周期运动，对应 LLE值由正变负；

当T增加到 90时，系统跳跃激变为 4周期运动，当T

在［90，120］区间时，系统主要为 4周期运动，伴有

阵发性混沌 .当 T在［125，250］区间时，系统为周

期运动，由 4周期运动→2周期运动→1周期运动，

状态改变途径为逆倍化分岔 .

2.5 系统随齿隙变化的分岔与混沌特性

取激励频率Ω = 1，以齿隙 b为变化参数，得到

系统的分岔图和LLE图，如图 7所示 .从图 7中可以

看出，随着 b的增加，系统首先为周期运动，同时发

生Hopf分岔，最后经倍化分岔进入混沌运动，在混

沌区间伴有两段狭窄的周期窗口，对应LLE在负值

区域有两处尖峰 .当 b在［0，0.38］区间时，系统为 1
周期运动，LLE值为负；当 b增加到 0.4时，系统经

Hopf分岔进入 2周期运动；当 b在［1.26，1.52］区间

时，系统有两个混沌带，伴有周期运动和拟周期运

动，对应 LLE值在正负区域变化；当 b在［1.54，
1.62］区间时，系统为多倍周期运动，分岔途径为倍

化分岔；当 b增加到 1.62时，系统经倍化分岔进入

混沌运动，对应LLE值为正 .
2.6 系统随刚度幅值变化的分岔与混沌特性

取激励频率Ω = 1，以刚度幅值 k为变化参数，

得到系统的分岔图和LLE图，如图 8所示 .从图 8中
可以看出，随着 k的增加，系统的分岔行为简单，由

 

 

E

Z 1

 

 

E

图5 系统随E变化的分岔图和LLE图

Fig.5 Bifurcation diagram and LLE diagram of the system with E

 

 

T

Z 1

 

 

T

图6 系统随T变化的分岔图和LLE图

Fig 6 Bifurcation diagram and LLE diagram of the system with T
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单周期运动经倍化分岔进入混沌运动 .当 k在［0，
0.35］区间时，系统为 1周期运动；当 k在［0.35，
0.81］区间时，系统为 2周期运动，对应的 LLE值为

负；当 k在［0.81，1］区间时，系统为混沌运动，对应

的LLE在正值区域变化且逐渐增加，表明系统混沌

程度增大 .

3 结论

建立考虑齿隙、时变啮合刚度和综合啮合误差

等多种非线性因素的行星齿轮扭转动力学振动模

型，采用Runge-Kutta数值方法，研究了系统随激励

频率、阻尼比、综合误差幅值、载荷、齿隙和刚度幅

值变化时的分岔和混沌特性 .
（1）随着激励频率的增加，系统分岔行为丰富，

运动状态在单周期运动、多倍周期和混沌运动之间

多次变化，途径为跳跃激变、倍化分岔和逆倍化分

岔，LLE在正值区域减小 .
（2）随着阻尼比的增加，分岔行为明显，系统开

始混沌特性明显，最后经逆倍化分岔由混沌运动进

入周期运动，对应的LLE值由正变负 .
（3）随着综合误差幅值的增加，系统分岔行为

丰富，经倍化分岔由单周期运动逐渐变为多倍周期

运动，最后倍化分岔进入混沌运动，LLE值在正值

区域逐渐增加 .
（4）随着荷载的增加，系统分岔行为模糊，系统

由混沌运动经跳跃激变和逆倍化进入周期运动，在

周期运动区域，最后经逆倍化分岔锁相为稳定的 1
周期运动，LLE值总体趋势减小 .

（5）随着齿隙的增加，系统分岔行为变得复杂，

主要集中在混沌区域中的周期窗口，最后，经倍化

分岔由周期运动进入混沌运动 . LLE值先逐渐增

加，最后，在正值区域围绕0.005上下波动 .
（6）随着刚度幅值的增加，系统分岔行为简单，

由周期运动经倍化分岔进入混沌运动，LLE值整体

趋势增加 .

b  

 

Z 1

 

 

b

图7 系统随 b变化的分岔图和LLE图

Fig.7 Bifurcation diagram and LLE diagram of the system with b

Z 1

 

 

k  

 

k

图8 系统随 k变化的分岔图和LLE图

Fig.8 Bifurcation diagram and LLE diagram of the system with k
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CHAOS ANALYSIS OF PLANETARY GEAR TRANSMISSION
SYSTEM BASED ON LARGEST LYAPUNOV EXPONENT *

Wang Jingyue1，2† Liu Ning1 Wang Haotian3
（1.School of Automobile and Transportation，Shenyang Ligong University，Shenyang，110159，China）

（2.State Key Laboratory of Mechanical Transmissions，Chongqing University，Chongqing，400044，China）
（3.School of Automation，Shenyang Aerospace University，Shenyang，110136，China）

Abstract To explore the chaotic characteristics of a planetary gear system，a centralized-parameter model of torsional
vibration of the planetary gear system was established，which considers several nonlinear factors，such as time-varying
meshing stiffness，backlash and comprehensive meshing error. The Runge-Kutta scheme was used to solve the equations
of motion. The bifurcation diagram and the largest Lyapunov exponent diagram were used to reveal bifurcation and chaos
characteristics of the system with respect to various parameters. The numerical simulations showed that with the increase
of excitation frequency，the motion of the system firstly changes into the intermittent chaos from periodic motion，and
then returns to the periodic motion from the chaos through reverse doube-period bifurcation. As the frequency increases
further，the system again undergoes chaotic motion through jump shock and doube-period bifurcation，and finally stabi⁃
lizes to the period-1 motion through inverse doube-period bifurcation. With the increase of damping ratio，the motion
shifts from chaos to periodic motion through inverse doube-period bifurcation. In the cases of increasing the integrated
meshing error，the backlash，or the stiffness，the motion changes from periodic motion to chaos by doube-period bifurca⁃
tion. With the increase of excitation amplitude，the motion moves from chaos to periodic motion through jump shock and
inverse doube-period bifurcation. The results of this study provide a theoretical guideline for the parameter design of a
planetary gear system.
Key words planetary gear system， nonlinear dynamics， bifurcation， chaos， largest Lyapunov exponent
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