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摘要　 本文建立了一个基于 Ｈｏｄｇｋｉｎ￣Ｈｕｘｌｅｙ 神经元的前馈神经元网络模型ꎬ研究了平均放电频率在前馈神

经元网络中的传递情况.研究结果显示ꎬ适当的层间连接概率与输入噪声强度能够提高前馈神经元网络的同

步效率ꎬ进而增强网络稳定传递放电频率的性能.此外ꎬ通过引入并调节突触时滞ꎬ发现适当的时滞对神经元

耦合系统的完全同步和前馈神经元网络内信息传输有明显的促进作用.
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引言

神经编码是神经科学中的关键问题ꎬ它研究神

经元对外部刺激如何做出响应ꎬ因而受到许多关

注.在人们提出的诸多编码理论中ꎬ有两种编码机

制被广泛接受ꎬ分别是频率编码[１] 和时间编码[２] .
频率编码认为神经元通过特定时间窗内的放电频

率来编码外部信息ꎬ神经放电是非同步的.而时间编

码(亦称为同步编码)ꎬ则认为神经元通过精确的放

电时刻来编码外部信息.目前ꎬ神经信息如何编码在

神经科学中仍是一个持续争议的话题.尽管如此ꎬ但
基于过去有关神经信息编码机制的研究结果ꎬ我们

仍可以研究神经信息在神经系统中的传递问题.
前馈型神经元网络通常被作为研究神经信息

传递的网络模型[３] .Ｄｉｅｓｍａｎｎ 等研究了前馈神经元

网络(Ｆｅｅｄｆｏｒｗａｒｄ ｎｅｕｒｏｎａｌ ｎｅｔｗｏｒｋꎬ简称 ＦＦＮ)中基

于时间编码的神经信息的传递[４－８] .Ｋｕｍａｒ 等分析

了前馈结构在神经活动传递中的作用和研究情

况[９] .这些研究结果揭示前馈神经元网络更适合于

传递同步放电.例如ꎬＬｉｔｖａｋ 等人认为前馈神经元网

络中的基于频率编码的平均放电频率的传递是难

以实现的[７] .但是ꎬ也有研究结果指出同步状态下ꎬ
前馈神经元网络中能够稳定地传递放电频率[１０] .

神经元系统受多种因素的影响ꎬ例如 Ｗａｎｇ 等

研究了噪声、膜细胞时间常数等因素对放电频率在

ＦＦＮ 中传递的影响[１１] .噪声也能够诱发神经元网

络中的复杂动力学现象ꎬ如随机多共振现象[１２] .时
滞是神经元系统中重要的影响因素之一ꎬ它对神经

元系统的信息编码和信息加工等有重要作用[１３] .
在理论研究中ꎬ王青云、王如彬等研究了时滞对耦

合神经元网络的动力学特性的影响[１４－１９]ꎬ这些研

究结果表明时滞能够促使神经元网络产生更加丰

富的动力学现象和特性.同时ꎬ孙晓娟等也研究了

部分时滞对神经元网络同步和信号检测的作

用[２０－２２] .由此可见ꎬ时滞对神经元系统确有较大作

用.此外ꎬ神经元系统的网络拓扑结构也是一个重

要的因素.
因此ꎬ本文构建了一个以 Ｈｏｄｇｋｉｎ￣Ｈｕｘｌｅｙ 神经

元为节点的前馈神经元网络模型ꎬ主要研究平均放

电频率在前馈神经元网络中的传递性ꎬ着重讨论了

多个参数包括层间连接概率、输入噪声强度、时滞

对频率传递的影响.
本文的主要结构如下:第一部分介绍前馈型神

经元网络模型ꎬ包括网络结构、神经元模型和度量

指标ꎻ第二部分为主要结果部分ꎬ主要分析噪声、层
间连边概率和时滞对神经信息传递的影响ꎻ最后进

行了总结与展望.

１　 前馈型神经元网络模型

１.１　 前馈神经元网络模型

该网络由 １０ 个神经元集群构成ꎬ以前馈形式
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依次耦合.每层即是一个神经元集群ꎬ并含有 Ｎ ＝
２００ 个神经元.相邻层以概率 Ｐ 进行随机连接ꎬ即
每个神经元(除了第一层)都会接收到来自前层大

约 Ｎ×Ｐ 个神经元的突触输入.默认情况下ꎬＰ ＝ ０.１.
由于只考虑前馈网络结构ꎬ故同一层内神经元之间

无耦合.如图 １ 所示ꎬ第 １ 层为输入层ꎬ接收和编码

外部信息ꎬ因此第 １ 层也被称为感知层 ( ｓｅｎｓｏｒｙ
ｌａｙｅｒ)ꎻ第 ２ 层到第 ９ 层为传输层ꎬ传输前层神经突

触信号ꎻ最后一层即第 １０ 层为输出层.记第 ｉ 层中

第 ｊ 个神经元为神经元( ｉꎬｊ).

图 １　 前馈神经元网络示意图

Ｆｉｇ.１　 Ｔｈｅ ａｒｃｈｉｔｅｃｔｕｒｅ ｏｆ ｆｅｅｄｆｏｒｗａｒｄ ｎｅｕｒｏｎａｌ ｎｅｔｗｏｒｋ

１.２　 神经元网络的数学模型

该网络中单个神经元采用 Ｈｏｄｇｋｉｎ￣Ｈｕｘｌｅｙ 神

经元模型ꎬ故第 ｉ 层中第 ｊ 个神经元( ｉꎬｊ)膜电位的

动力学微分方程为:

Ｃｍ
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其中ꎬＶꎬｍꎬｈꎬｎ 分别为神经元膜电位ꎬ钠离子电流

的激活和失活变量ꎬ 钾离子电流的激活变量.
ＶＫ ＝ －７７ｍＶꎬＶＮａ ＝ ５０ｍＶꎬＶＬ ＝ －５４.４ｍＶ 分别是钾离

子电流、钠离子电流和漏电流的反转电压. ｇＮａ ＝

１２０ｍＳ / ｃｍ２ꎬｇｋ ＝ ３６ｍＳ / ｃｍ２ꎬｇＬ ＝ ０.３ｍＳ / ｃｍ２是相应

的最大电导.Ｃｍ ＝ １μＦ / ｃｍ２是膜电容.函数ｍ¥(Ｖ)ꎬ
ｈ¥(Ｖ)ꎬｎ¥(Ｖ)及相关参数具体可参考 Ｈａｎｓｅｌ 等人

的文献[２３] .η１ꎬｊ( ｔ)为高斯白噪声ꎬ用于模拟感知层

神经元所收到的背景活动噪声ꎬ其统计特性则满足

<ξ１ꎬｊ( ｔ)>＝ ０ꎬ<ξ１ꎬｊ( ｔ１) ξ１ꎬｍ( ｔ２) > ＝ ２Ｄ δ１ꎬｍδ( ｔ１－ｔ２)ꎬ

其中 Ｄ 是第一层引入的噪声强度. Ｉｏ ＝ １μＡ / ｃｍ２为

外界输入电流ꎬ使得神经元有一定的放电频率. Ｉｓｙｎｉꎬｊ

( ｔ)表示第 ｉ 层中第 ｊ 个神经元所收到的来自( ｉ－１)
层的突触电流.

Ｉｓｙｎｉꎬｊ ( ｔ)＝
１
Ｎｉꎬｊ

∑
Ｎｉꎬｊ

ｐ＝１
ｇｓｙｎα( ｔ－ｔ( ｉ－１)ｐ)(Ｖｉꎬｊ－Ｖｓｙｎ)

其中ꎬα( ｔ)＝ (
ｔ－ｔｄ
τ

) ｅ
ｔ－ｔｄ
τ ꎬτ 为突触时间常数ꎬ选取 τ

＝ ２ｍｓꎬ突触权重ｇｓｙｎ ＝０.６ꎬｔｄ表示突触时滞ꎬ突触反转

电压Ｖｓｙｎ ＝０ｍＶꎬ即本文中的所有连接都是兴奋的.
１.３　 度量指标

为了更好地探究神经元放电频率信息在该前

馈网络中的传递ꎬ我们将从多个参数的角度考察其

对放电频率传递的影响ꎬ主要有噪声输入强度、层
间连接概率、突触时滞ꎬ并对这些因素进行定量分

析ꎬ从而更好地理解前馈网络信息处理和传输的机

制.对于频率传输模式ꎬ我们认为当输出放电频率

约等于输入放电频率时ꎬ网络携带的信息被完整传

输.根据能否被稳定地、成功地传输到网络的输出

层ꎬ放电行为的传输状态可以分为三种基本类型:
当输入输出比率几乎等于 １ 时ꎬ称之为稳定的放电

率传输(ｓｔａｂｌｅ ｒａｔｅ ｐｒｏｐａｇａｔｉｏｎ)ꎻ当输入输出比率大

于 １ 时ꎬ称之为不稳定的放电率传输(ｕｎｓｔａｂｌｅ ｒａｔｅ
ｐｒｏｐａｇａｔｉｏｎ)ꎻ当输入输出比率远小于 １ 时ꎬ称之为

失败的放电率传输( ｆａｉｌｅｄ ｒａｔｅ ｐｒｏｐａｇａｔｉｏｎ).以下是

在量化分析过程中需要的一些量化指标:
(１)平均放电率.第 ｉ 层的平均放电率是该层

所有(Ｎ 个)神经元在一定时间窗 Δｔ 内的放电数量

的平均值:

ｒｉ ＝
１
Ｎ

∑
ｉ
ｓｐｉｋｅｓ

Δｔ
(５)

(２)平均互相关指数.我们用平均互相关指数

来量化各层神经元的放电同步性.将特定时间窗 ω
内的放电序列离散化为二进制序列ꎬ即 Ｘ( ｉ)＝ １ 表

示有放电ꎬＸ( ｉ)＝ ０ 表示无放电.则第 ｉ 层的平均互

相关指数Ｋ ｉ为:

Ｋ ｉ ＝
１

Ｎ(Ｎ － １)∑
Ｎ

ｉ ＝ １∑
Ｎ
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其中ꎬｋｍꎬｎ表示任意两神经元之间的相干性ꎬＸꎬＹ

４６
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分别表示该神经元的离散放电序列.

２　 主要结果

为了保证脉冲传输有足够的时间到达网络的

输出层ꎬ所有的数值仿真实验均执行 １０００ｍｓꎬ对于

每组实验条件ꎬ独立执行若干次仿真实验并取平均

值作为最终结果.

图 ２　 前馈神经元网络中放电光栅图

Ｆｉｇ.２　 Ｔｈｅ ｓｐｉｋｉｎｇ ｒａｓｔｅｒ ｏｆ ＦＦＮ

２.１　 输入噪声强度对放电频率在 ＦＦＮ 中传递的

影响

前馈神经元网络中放电的传递情况如图 ２ 所

示ꎬ从上到下依次为输入层、传输层和输出层ꎬ其中

层间连接概率 Ｐ＝ ０.１ꎬ输入噪声强度 Ｄ ＝ ３.图 ２ 表

明由于受到输入噪声的影响ꎬ输入层中神经元产生

了无规则的随机放电ꎬ而随着放电活动逐层传递ꎬ
在更深层则产生愈来愈强的同步放电.

接下来我们将讨论输入噪声强度对频率传递

的影响.输入噪声强度对频率传递的影响如图 ３ 所

示.当输入噪声强度较小(如 Ｄ ＝ ２)时ꎬ放电率迅速

衰减ꎬ并在第 ３ 层达到 ０ 并保持下去ꎬ这是因为较

小的噪声强度使得输入层产生的放电较弱ꎬ不足以

传递下去ꎬ因此在第 ３ 层神经元已经不放电ꎬ频率

传输失败.而当输入噪声强度过大(如 Ｄ ＝ １０)时ꎬ
放电率能够传递下去ꎬ但显然深层的放电率是明显

大于输入层放电率的ꎬ因此这是一个不稳定的频率

传输.只有在适当的输入噪声强度下(如 Ｄ ＝ ３)ꎬ放
电率在第五层达到饱和并保持下去ꎬ同时深层放电

率几乎等于输入放电率ꎬ显然ꎬ此时网络成功地传

递平均放电率信息.因此ꎬ我们认为最佳的输入噪

声强度为 Ｄ＝ ３.

图 ３　 不同输入噪声强度下放电率的传递情况

Ｆｉｇ.３　 Ｔｈｅ ｐｒｏｐａｇａｔｉｏｎ ｏｆ ｆｉｒｉｎｇ ｒａｔｅ ｕｎｄｅｒ ｄｉｆｆｅｒｅｎｔ ｎｏｉｓｅ ｉｎｔｅｎｓｉｔｙ

２.２　 层间连接概率对放电频率在 ＦＦＮ 中传递的

影响

层间连接概率表示相邻两层之间连接的强度

以及连接数量的多少.我们模拟了不同层间连接概

率下ꎬ网络中频率信息传递的情况ꎬ结果如图 ４ 所

示.当连接概率很小时(如 Ｐ＝ ０.０５)ꎬ不同神经元在

每层共享的相同突触输入很小ꎬ后层放电情况迅速

衰弱ꎬ信号传输失败.当连边概率增加之后(如 Ｐ ＝
０.１)ꎬ放电速率在前两层会有衰减的趋势ꎬ紧接着

在第 ４ 层会回升ꎬ然后达到饱和状态ꎬ并稳定传递

下去.当连边概率更大时(如 Ｐ ＝ ０.５)ꎬ后层放电率

自第 ２ 层开始即逐渐增大并在第 ３ 层后达到饱和

并传输下去ꎬ但输出层频率明显大于输入层频率ꎬ
显然这并不是一个稳定的频率传输.

图 ４　 不同层间连接概率下放电率的传递情况

Ｆｉｇ.４　 Ｔｈｅ ｐｒｏｐａｇａｔｉｏｎ ｏｆ ｆｉｒｉｎｇ ｒａｔｅ ｕｎｄｅｒ ｄｉｆｆｅｒｅｎｔ

ｉｎｔｅｒｌａｙｅｒ ｃｏｎｎｅｃｔｉｏｎ ｐｒｏｂａｂｉｌｉｔｙ

５６
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　 　 图 ３ 和图 ４ 分别表明了只有在合适的输入噪

声强度及层间连接概率下ꎬ网络才能够进行稳定的

频率传输.那么ꎬ这背后的机制是什么呢? 我们注

意到ꎬ图 ２ 中ꎬ随着放电活动逐层传递ꎬ在更深层产

生了愈来愈强的同步放电.过去的研究结果表明ꎬ
同步可以促进频率信息的传递.于是我们考察了不

同输入噪声强度和层间连接概率下ꎬ各层神经元放

电的同步情况ꎬ结果如图 ５ 所示.在较低的层间连

接概率(如 Ｐ ＝ ０.０５)下ꎬ无论噪声强度多大ꎬ同步

度很快衰减为 ０ꎬ这是因为层间连接概率过低前一

层并不能产生足够的突触后电流ꎬ故而后层只有较

少神经元产生放电ꎬ在更深层逐渐地不能产生放

电ꎬ传递失败.当连接概率较大时ꎬ网络最终都能够

建立同步.结合图 ４ꎬ说明后层神经放电同步的形成

保证了放电率的稳定传递.

图 ５　 不同输入噪声强度和层间连接概率下各层同步情况

(红线 Ｄ＝ １０ꎬ黄线 Ｄ＝ ５ꎬ绿线 Ｄ＝ ２ꎻＰ ＝ ０.５ꎬＰ ＝ ０.１ꎬＰ ＝ ０.０５)

Ｆｉｇ.５　 Ｔｈｅ ｓｙｎｃｈｒｏｎｉｚａｔｉｏｎ ｉｎ ｄｉｆｆｅｒｅｎｔ ｌａｙｅｒｓ ｕｎｄｅｒ ｄｉｆｆｅｒｅｎｔ ｎｏｉｓｅ

ｉｎｔｅｎｓｉｔｙ ａｎｄ ｉｎｔｅｒｌａｙｅｒ ｃｏｎｎｅｃｔｉｏｎ ｐｒｏｂａｂｉｌｉｔｙ.

(Ｒｅｄ Ｄ＝ １０ꎬＹｅｌｌｏｗ Ｄ＝ ５ꎬＧｒｅｅｎ Ｄ＝ ２:Ｐ ＝ ０.５ꎬＰ ＝ ０.１ꎬＰ ＝ ０.０５)

　 　 另外ꎬ我们观察到对于不同的连接概率ꎬ后层

同步的形成速度是不同的.当连接强度 Ｐ 很大时ꎬ
不同神经元共享的相同突触输入也很大ꎬ所以放电

率传递对层数的依赖性与连接强度小的时候有很

大不同.例如ꎬＰ＝ ０.５ 时ꎬ放电率从第二层就迅速增

长并到达饱和值ꎬ因此连接概率越大ꎬ建立同步的

速度就越快.也就是说ꎬ连接概率越大ꎬ网络越容易

在早期(浅层)形成同步.另外ꎬ在相同的连接概率

下ꎬ通过对输入噪声的分析ꎬ我们发现在同步形成

前ꎬ输入噪声强度越大ꎬ该层的同步度越高.这表明

输入噪声强度对提高同步性也起到了建设性作用ꎬ
可以使同步速度加快.因此ꎬ适当的层间连接概率

与输入噪声强度提高了前馈神经元网络的同步效

率ꎬ进而提高了网络稳定传递放电频率的性能.
２.３　 时滞对放电频率在 ＦＦＮ 中传递的影响

生理实验表明ꎬ由于信息传递速度的有限性和

突触间隙的存在ꎬ时滞效应在神经元信息传递之间

是客观存在的ꎬ并对神经元网络的信息传递响应产

生一定影响.

图 ６　 时滞对频率传递的影响(Ｐ ＝ ０.１ꎬＤ＝ ３)

Ｆｉｇ.６　 Ｔｈｅ ｅｆｆｅｃｔ ｏｆ ｓｙｎａｐｔｉｃ ｄｅｌａｙ ｏｎ ｔｈｅ ｒａｔｅ ｐｒｏｐａｇａｔｉｏｎ

(Ｐ ＝ ０.１ꎬＤ＝ ３)

　 　 图 ６ 展示了时滞对频率传递的影响.在参数 Ｐ
＝ ０.１ꎬＤ＝ ３ 的条件下ꎬ较小的时滞对频率编码传递

几乎没有影响.但当时滞较大时ꎬ如ｔｄ>１ꎬ频率在后

层迅速达到饱和ꎬ并保持比输入层更大的值ꎬ显然ꎬ
时滞不利于频率的稳定传输.当时滞过大时(如ｔｄ ＝
２.５)ꎬ在第三层后ꎬ频率突然衰减为 ０ꎬ这表明过大

的时滞使得后层不能够产生足够多的放电ꎬ导致了

频率传递的失败.过大的时滞导致了失败的频率传

输.那么ꎬ时滞能够有利于频率的稳定传输吗?

图 ７　 时滞对频率传递的影响(Ｐ ＝ ０.０５ꎬＤ＝ ３)

Ｆｉｇ.７　 Ｔｈｅ ｅｆｆｅｃｔ ｏｆ ｓｙｎａｐｔｉｃ ｄｅｌａｙ ｏｎ ｔｈｅ ｒａｔｅ ｐｒｏｐａｇａｔｉｏｎ

(Ｐ ＝ ０.０５ꎬＤ＝ ３)
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第 １ 期 司皓等:前馈型神经元网络中的放电频率传递分析

　 　 接下来ꎬ我们将网络参数调整为 Ｐ ＝ ０.０５ꎬＤ ＝
３ꎬ结果如图 ７ 所示.根据图 ４ 可知ꎬ无突触时滞的

情况下ꎬ低连接概率下频率并不能够成功传递.然
而ꎬ加入时滞后ꎬ我们发现ꎬ较小的时滞并不能够使

得频率传递下去ꎻ而较大的时滞又会使得后层频率

过饱和ꎬ导致了不稳定的频率传输.当时滞适中时ꎬ
如ｔｄ ＝ １.５ꎬ频率则稳定地在前馈型神经元网络中传

递下去.因此ꎬ即使在层间耦合稀疏、信号传输失败

的情况下ꎬ引入适当的突触时滞可使网络间的同步

性增强ꎬ进而使得频率信号在层间能够稳定地传

递.即适当的时滞对频率在前馈型网络中的传递有

明显的促进作用.

３　 结论

神经信息的编码和传递是神经科学中的重要

问题.本文通过建立基于 Ｈｏｄｇｋｉｎ￣Ｈｕｘｌｅｙ 神经元的

前馈型神经元网络ꎬ研究了放电频率在其中的传递

情况.通过数值仿真ꎬ我们发现适当的层间连接概

率与输入噪声强度能够提高前馈神经元网络的同

步效率ꎬ进而增强放电频率在网络中稳定传递的性

能.通过引入并调节时滞ꎬ可促进放电频率在前馈

型神经元网络中的平稳传递.
真实的神经元系统比较复杂ꎬ神经突触不仅有

兴奋性突触ꎬ还有抑制性突触ꎬ同时神经元系统中

还存在反馈连接.放电频率如何在更加复杂的前馈

型神经元网络中传递还需深入研究.此外ꎬ突触可

塑性是神经元系统中的重要特性ꎬ考虑 ＳＴＤＰ 的前

馈神经元网络中的信息传递亦值得研究[２４] .同时ꎬ
由于神经信息的编码形式不止频率编码和时间编

码两类ꎬ还存在能量编码、集群编码等其他编码机

制.与此相关的神经信息如何在神经元系统中传

递ꎬ也值得进一步探索.
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