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Fig.1 The architecture of feedforward neuronal network
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ANALYSIS OF FIRING RATE PROPAGATION IN THE
FEEDFORWARD NEURONAL NETWORK*
Si Hao' Zhao Xintong” Sun Xiaojuan'’
(1.School of Science , Beijing University of Posts and Telecommunications , Beijing 100876, China)
(2.Institute of Information Photonics and Optical Communications ,Beijing University
of Posts and Telecommunications , Beijing 100876, China )
Abstract In this paper,a feedforward neuronal network based on Hodgkin-Huxley neuronal model is constructed

and propagation of the mean firing rate in such a feedforward neuronal network is studied.The obtained results il-

lustrate that proper interlayer connection probability and input noise intensity could promote the efficiency of syn-

chronization in the feedforward neuronal network ,which hence enhances the performance of stable propagation of

the firing rate. Moreover, by introducing and modifying the synaptic time delay, we find that proper time delay

could significantly promote the full synchronization in the neuronal coupled systems and information propagation in

the studied feedforward neuronal networks.
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