星形胶质细胞膜电位门控钙离子通道 调控神经元癫痫放电^{*}

独盟盟1 袁治轩1 李佳佳1 吴莹1,2*

(1.西安交通大学 机械结构强度与振动国家重点实验室,航天航空学院,西安 710049)

(2.西安交通大学力学实验教学国家示范中心,西安 710049)

摘要 细胞外空间钾离子的大量积累会导致星形胶质细胞膜去极化,星形胶质细胞膜电位变化引起的电压 门控钙离子通道(VGCCs)电流内流会增加星形胶质细胞内钙离子浓度的振荡幅值,从而增强星形胶质细胞 对神经元的正反馈作用.考虑星形胶质细胞 VGCCs 的钙离子内流,本文构建了一种包含多种离子浓度动力 学行为的神经元--胶质细胞耦合模型.数值模拟结果发现,VGCCs 的钙离子内流是影响星形胶质细胞内 Ca²⁺ 浓度升高的一个主要因素;VGCCs 电流增强会诱发神经元产生自发性癫痫放电活动实验现象的内在机理. 本文研究结果可以为星形胶质细胞钙离子代谢紊乱诱发神经系统自发性癫痫放电提供一种解释.

关键词 星形胶质细胞, VGCCs, 钙离子, 癫痫

DOI: 10.6052/1672-6553-2020-012

引言

神经元产生动作电位时会导致细胞外大量的 钾离子(K⁺)和谷氨酸(Glus)积累.星形胶质细胞主 要通过缓冲细胞外空间中 K⁺和 Glus 来调控神经元 放电^[1-5].一方面,星形胶质细胞通过 Kir4.1 通道摄 取胞外 K⁺的同时使细胞膜去极化,然后,去极化的 星形胶质细胞刺激 VGCCs 打开引起钙离子(Ca²⁺) 流入星形胶质细胞,增加了星形胶质细胞中 Ca²⁺浓 度([Ca²⁺]_A)水平,从而增强了星形胶质细胞对神 经元的正反馈电流^[1-4].另一方面,细胞外空间"多 余的"Glus 与星形胶质细胞膜受体相结合,促进星 形胶质细胞内 IP₃浓度升高,胞内 IP₃浓度升高会刺 激钙库(内质网)释放 Ca²⁺,从而提升星形胶质细 胞中 Ca²⁺浓度([Ca²⁺]_A)水平,增强了对神经元的 正反馈电流^[5].

星形胶质细胞静息膜电位主要依赖于 K⁺平衡 电位^[6,7].星形胶质细胞 Kir4.1 通道关闭或总的 Kir4.1 通道打开数目减小都会使得膜电位去极化

* 国家自然科学基金资助项目(11772242)

减弱(静息膜电位(E_m))^[8,9], Ca²⁺内流的驱动力随 之减弱,从而抑制通过 VGCCs 的 Ca²⁺内流^[10-12].由 于通过 VGCCs 的 Ca²⁺内流是影响胶质细胞内 Ca²⁺ 浓度的主要因素^[13],因此,星形胶质细胞 VGCCs 蛋白表达增强会增加胞内 Ca²⁺浓度水平^[10,11,13,23]. 实验发现, VGCCs 电流增强不仅会增加星形胶质 细胞内 Ca²⁺浓度([Ca²⁺]_o), 而且增加的 Ca²⁺浓度 瞬态幅值与星形胶质细胞膜去极化成正比^[14].另 外,实验还发现,星形胶质细胞 VGCCs 蛋白过表达 与神经元癫痫放电活动密切相关^[10,15].

由 Kir4.1 通道 K⁺内流引起的星形胶质细胞膜 去极 化问题已有大量实验和模型进行了研 究^[1,16-18].2009 年以来,陈尚宾等人给出了星形胶 质细胞 VGCCs 电流动力学模型,数值模拟了通过 VGCCs 的 Ca²⁺内流是星形胶质细胞中 Ca²⁺水平增 强的主要来源,但只是单独研究星形胶质细胞,且 设定星形胶质细胞膜电位为一个固定参数^[24,25].另 外,也有部分学者关注于 Glus 刺激星形胶质细胞 钙库(内质网)释放 Ca²⁺而引起的胞内 Ca²⁺浓度增

²⁰¹⁹⁻⁰⁸⁻³⁰ 收到第1稿, 2019-11-26 收到修改稿.

[†] 通讯作者 E-mail:wying36@xjtu.edu.cn

强调控神经元放电活动的研究^[19-22].目前,Kir4.1 通道引起的星形胶质细胞膜去极化问题、星形胶质 细胞膜去极化引起 VGCCs 的 Ca²⁺内流问题、以及 Glus 刺激星形胶质细胞钙库释放 Ca²⁺引起的胞内 Ca²⁺浓度增强问题都是独立研究的.实际上,这三个 问题是一个相互依赖的过程.

本文构建了一种考虑 VGCCs 钙离子电流的神 经元-星形胶质细胞耦合模型,模型刻画了细胞内 外钾离子,钙离子,以及钠离子代谢与星形胶质细 胞膜去极化机制.首先,我们给出了 VGCCs 电流和 星形胶质细胞内钙离子浓度与胞外钾离子和钙离 子浓度之间的依赖关系;其次,我们的模拟结果验 证了增强 VGCCs 电导会诱发神经元自发性癫痫放 电活动的实验现象.

1 数学模型

神经元采用 H-H 模型动力学方程^[18,26,27]:

$$C \frac{\mathrm{d}V_N}{\mathrm{d}t} = g_{Na}m^3h(V_N - V_{Na}) - g_K n^4(V_N - V_K) -$$

 $g_{NaL}(V_N - V_{Na}) - g_{KL}(V_N - V_K) - g_{Cl}(V_N - V_{Cl}) - I_{Ast}$ (1) 其中, *C* 是神经元膜电容. g_{Na} , g_K , g_{Ca} , g_{NaL} , 以及 g_{KL} 为电导值. I_{Ast} 为星形胶质细胞的反馈电流. V_{Na} , V_K 以及 V_{Cl} 为 Na⁺, K⁺以及 Cl⁻反转电位.n, m 和 h 为 门变量参数,表达式如下:

$$\frac{\mathrm{d}q}{\mathrm{d}t} = \varphi \left[\alpha_q(V_N) \left(1 - q \right) - \beta_q(V_N) q \right], q = m, n, h$$

(2)

$$\alpha_{m} = 0.1(V_{N}+30) / [1 - \exp(-0.1(V_{N}+30))]$$

$$\beta_{m} = 4\exp[-(V_{N}+55) / 18]$$

$$\alpha_{n} = 0.01(V_{N}+34) / [1 - \exp(-0.1(V_{N}+34))]$$

$$\beta_{n} = 0.125\exp(-(V_{N}+44) / 80)$$

$$\alpha_{h} = 0.07\exp(-(V_{N}+44) / 20)$$

$$\beta_{h} = 1 / [1 + \exp(-0.1(V_{N}+14))]$$

Na⁺,K⁺和 Cl⁻反转电位具体表达式为

$$V_j = 26.64 \ln\left(\frac{\lfloor j \rfloor_{\text{Ni}}}{\lfloor j \rfloor_{\circ}}\right), j = \text{K}^+, \text{Na}^+, \text{Cl}^-$$
(3)

[*j*]_{Ni}和[*j*]_。表示神经元内外离子浓度(K⁺, Na⁺和 Cl⁻).

1.1 钾离子平衡方程

胞外 K⁺浓度([K⁺]_o)的改变依赖于跨神经元

膜的 K⁺流, K⁺空间扩散^[26,28],神经元与星形胶质 细胞膜上的 Na⁺/K⁺-ATPase 泵,星形胶质细胞 Kir4.1 通道^[18,27].通过细胞膜的电流会引起细胞内 外离子浓度的变化.穿过膜的电流 I 等于每单位时 间的离子流.因此,神经元、星形胶质细胞以及细胞 外空间的 K⁺浓度动力学方程如下:

$$\frac{\mathrm{d}\left[\mathbf{K}^{+}\right]_{o}}{\mathrm{d}t} = J_{IK} - 2J_{pump,N} - 2J_{pump,A} + J_{Kir} - J_{diff} \qquad (4)$$

$$\frac{\mathrm{d}\left[\mathrm{K}^{+}\right]_{A}}{\mathrm{d}t} = \left(-J_{kir} + 2I_{pumpA}\right)v_{rate2}$$
(5)

$$\frac{I \left[K^{+} \right]_{N}}{dt} = \left(-J_{IK} + 2J_{pump,N} \right) v_{rate1}$$
(6)

类似于 K⁺浓度动力学行为,胞外 Na⁺浓度 ([Na⁺]_o)的变化依赖于跨神经元膜 Na⁺流,神经元 与星形胶质细胞 Na⁺/K⁺-ATPase 泵^[17,18,26,27].神经 元、星形胶质细胞和细胞外空间 Na⁺浓度动力学方 程如下:

$$\frac{\mathrm{d}\left[\mathrm{Na}^{+}\right]_{o}}{\mathrm{d}t} = J_{Na,N} + 3J_{pump,N} + 3J_{pump,A} +$$
(7)

$$J_{NaL,N} + 3J_{NaL,A} \frac{\mathrm{d} \left[\mathrm{Na}^{+} \right]_{A}}{\mathrm{d}t} = \left(-3J_{pump,A} - J_{NaL,A} \right) v_{rate2}$$
(8)

$$\frac{\mathrm{d}\left[\left[\mathrm{Na}\right]_{\mathrm{N}}}{\mathrm{d}t} = \left(-J_{Na,N} - 3J_{pump,N} - J_{NaL,N}\right)v_{rate1} \qquad (9)$$

方程(4-9)中 $J_{pump,N}$ 、 J_{diff} 和 $J_{pump,A}$ 具体表达式为:

$$J_{pump,N} = \rho \left(\frac{1}{1.0 + \exp(25.0 - [Na^{+}]_{N})/3.0} \right) \times \left(\frac{1}{1 + \exp(8 - [K^{+}]_{o})} \right)$$
$$J_{diff} = \varepsilon \left([K^{+}]_{o} - k_{bath} \right)$$
(10)
$$J_{pump,Ai} = \left(\frac{1}{3} \right) \rho \left(\frac{1}{1.0 + \exp(25.0 - [Na^{+}]_{A})/3.0} \right) \times \left(\frac{1}{1 + \exp(8 - [K^{+}]_{o})} \right)$$

其中, ρ 为 Na⁺/K⁺ – ATPase 泵强度, [Na⁺]_N和 [Na⁺]_A分别表示神经元和星形胶质细胞内 Na⁺浓 度. ε 为 K⁺空间扩散系数, K_{bath} 神经元所处电解液 中得 K⁺浓度.

1.2 钙离子平衡方程

基于 经 典 的 星 形 胶 质 细 胞 内 Ca²⁺ 浓 度 ([Ca²⁺]_A)动力学模型^[19,21,22,29],考虑星形胶质细 胞膜去极化激活的 VGCCs 电流和流出星形胶质细胞的 Ca²⁺漏流.本文构建了新的[Ca²⁺]_A动力学方程:

$$\frac{\mathrm{d} \left[\left[\mathrm{Ca}^{2^{+}} \right]_{A}}{\mathrm{d}t} = c_{1}v_{1}p_{\infty}^{3}n_{\infty}^{3}q^{3}(\left[\mathrm{Ca}^{2^{+}} \right]_{ER} - \left[\mathrm{Ca}^{2^{+}} \right]_{A}) + c_{1}v_{2}(\left[\mathrm{Ca}^{2^{+}} \right]_{ER} - \left[\mathrm{Ca}^{2^{+}} \right]_{A}) - \frac{v_{3} \left[\mathrm{Ca}^{2^{+}} \right]^{2}}{\left[\mathrm{Ca}^{2^{+}} \right]^{2} + k_{3}^{2}} + J_{VGCCs} - J_{VGCCs,L}$$

$$\frac{\mathrm{d}q}{\mathrm{d}t} = \alpha_{q}(1-q) + \beta_{q}q \qquad (11)$$

其中, J_{VGCCs} 与 $J_{VGCCs,L}$ 分别为通过 VGCCs 的 Ca²⁺流 和 VGCCs 漏流. [Ca²⁺]_{ER}表示星形胶质细胞内质网 Ca²⁺平衡浓度, p_x , n_x , α_a 以及 β_a 表达式如下:

$$p_{\infty} = \frac{\left[\operatorname{IP}_{3} \right]_{A}}{\left[\operatorname{IP}_{3} \right]_{A} + d_{1}}, n_{\infty} = \frac{\left[\operatorname{Ca}^{2^{+}} \right]_{A}}{\left[\operatorname{Ca}^{2^{+}} \right] + d_{5}},$$

$$\alpha_{q} = a_{2}d_{2} \frac{\left[\operatorname{IP}_{3} \right]_{A} + d_{1}}{\left[\operatorname{IP}_{3} \right]_{A} + d_{3}}, \beta_{q} = a_{2} \left[\operatorname{Ca}^{2^{+}} \right]_{A}$$
(12)

其中,三磷酸肌醇 IP₃浓度对神经元动作电位影响的方程为^[19]:

$$\frac{\mathrm{d}\left[\mathrm{IP3}\right]_{\mathrm{A}}}{\mathrm{d}t} = \frac{1}{\tau_{IP3}} \left(\left[\mathrm{IP}_{3}\right]^{*} - \left[\mathrm{IP}_{3}\right]_{\mathrm{A}}\right) + r_{IP3}\Theta(V_{N} - 50mV)$$
(13)

我们给出的细胞外空间 Ca²⁺浓度([Ca²⁺]_o)动 力学方程为:

$$\frac{\mathrm{d}\left[\operatorname{Ca}^{2^{+}}\right]_{o}}{\mathrm{d}t} = D_{Cao}\left(\left[\operatorname{Ca}^{2^{+}}\right]_{o} - Ca_{bath}\right) + L_{ext}\left[\operatorname{Ca}^{2^{+}}\right]_{o} - Ca_{bath}\right)$$

 $J_{VGCC} - M_{Ca}([K^{+}]_{o} - Ko_{max/2})(Ca_{o,rest} - Cao)(14)$ 其中, D_{Cao} 为 Ca²⁺空间扩散系数. Ca_{bath} 为细胞外电 解液中 Ca²⁺浓度. L_{ext} 为星形胶质细胞 Ca²⁺漏电导. Cao_{rest} 为静息态时细胞外 Ca²⁺浓度.

方程(1)中星形胶质细胞对神经元的反馈电流 *I*_{Au}表达式为^[19]:

$$I_{Ast} = 2.11\Theta(y)\ln(y)$$

y = ln([Ca²⁺]_A/nM-196.69) (15)

1.3 VGCCs 电流表达式

星形胶质细胞膜上 VGCCs 电流表达式为^[25]:

 $I_{VGCCs} = g_{VGCCs} m_{VGCCs} h_{VGCCs} (V_A - E_{Ca})$ (16)

其中, g_{vcccs} 为 VGCCs 电导, m_{vcccs} 和 h_{vcccs} 为门控变 量函数,具体表达式为:

$$\frac{\mathrm{d}m_{VGCCs}}{\mathrm{d}t} = (\overline{m_{VGCCs}} - m_{VGCCs})/\tau_m,$$

$$\frac{\mathrm{d}h_{VGCCs}}{\mathrm{d}t} = (\overline{h_{VGCCs}} - h_{VGCCs}) / \tau_h$$

其中:

$$\overline{m_{VGCCs}} = \frac{1.0}{1.0 + e^{-(V_A + 50.0)/3.0}}, h_L = \frac{0.00045}{0.00045 + Ca_{cyt}}$$
$$\tau_{mL} = 18.0e^{-((V_A + 45.0)/20.0)^2} + 1.5$$

方程(16)中 E_{ca} 为Ca²⁺的能斯特电位,表达式为:

$$E_{Ca} = (RT/zF)\ln([Ca^{2+}]_o/[Ca^{2+}]_A)$$
(17)

1.4 星形胶质细胞膜电位动力学方程

本文构建了新的星形胶质细胞膜电位(*V_A*)动力学方程:

$$C_A \frac{\mathrm{d}V_A}{\mathrm{d}t} = -I_{Kir4.1} - I_{\mathrm{VGCCs}} - I_{Ca,\mathrm{L}} - I_{leak,K}$$
(18)

其中, C_A 为星形胶质细胞电容, $I_{kir4.1}$ 为内向整流钾 离子通道(Kir4.1)电流,具体表达式为^[27]:

$$I_{kirA} = g_{kir} \sqrt{\left[\mathbf{K}^{+} \right]_{o}} \left(V_{A} - E_{kir} \log\left(\left[\mathbf{K}^{+} \right]_{o} / \left[\mathbf{K}^{+} \right]_{A} \right) \right)$$
(19)

其中 g_{kir} 和 E_{kir} 分别为Kir4.1通道电导和能斯特常数.

2 数值结果

2.1 不同胞外 K⁺浓度时 VGCCs 电导影响星形胶 质细胞 Ca²⁺浓度

实验发现,细胞外"高"K⁺引起的星形胶质细 胞膜去极化会刺激通过 VGCCs 的 Ca²⁺内流,增加 星形胶质细胞内 Ca²⁺浓度水平^[10-13].为了验证 VGCCs 电流对星形胶质细胞 Ca²⁺浓度的重要性, 我们给出了神经元与星形胶质细胞所处电解液中 K⁺浓度(K_{bath})等于 5.0mM 和 8.0mM 时,细胞外低 $Ca^{2+}(0.0001 \text{ mM})$ 且 VGCCs 阻塞($g_{VGCCs} = 0.0001 \text{ pS}$) 时;细胞外低 Ca2+(0.0001mM) 且 VGCCs 电导正常 (g_{VCCCs} = 4.0pS)时;细胞外 Ca²⁺浓度(0.5mM)和 VGCCs 电导(g_{vGCCs}=4.0 pS)都正常时;以及细胞外 Ca²⁺浓度正常(0.5mM)且 VGCCs 电导增强(g_{vcccs} =74.4pS)时星形胶质细胞内 Ca²⁺浓度(「Ca²⁺]_A) 振荡时间历程图,如图1所示.从图1(A)可以看 出,当胞外低 Ca2+环境且 VGCCs 阻塞时,胞外 K+ 浓度升高只会使得星形胶质细胞内 Ca²⁺浓度产生 非常小的微幅变化;而 VGCCs 正常态与阻塞态相

2020年第18卷

比, VGCCs 正常时的 Ca²⁺内流会使星形胶质细胞 内 Ca²⁺浓度(「Ca²⁺]、)较 VGCCs 阻塞时有较小的 峰值增加,且星形胶质细胞内 Ca^{2+} 浓度(「 Ca^{2+}]、) 更缓慢的上升至最大峰值,如图1(A和B)所示, 这是由于 VGCCs 正常时胞外"高" K⁺引起星形胶 质细胞膜去极化而激发 VGCCs 的 Ca²⁺内流需要一 个时间过程.另外,VGCCs 正常时,星形胶质细胞内 Ca^{2+} 浓度(「 Ca^{2+}]、)在胞外 Ca^{2+} 浓度正常与胞外低 Ca²⁺环境相比具有一定上升幅度,如图1(B和C) 所示,这说明胞外 Ca²⁺环境也是影响星形胶质细胞 内 Ca^{2+} 浓度($[Ca^{2+}]$)的一个因素.另外,我们发现 胞外 Ca²⁺正常环境下. VGCCs 电流增强与 VGCCs 电流正常时相比星形胶质细胞内 Ca²⁺浓度 (「Ca²⁺],)显著升高,如图1(C和D)所示.综上,我 们得出结论, VGCCs 电流是影响星形胶质细胞质 中 Ca²⁺浓度水平的一个主要因素,这一模拟结果与 实验观察结果相一致^[10,11,13].最后,从图1中四种 条件下星形胶质细胞内 Ca^{2+} 浓度($[Ca^{2+}]_{A}$)时间 历程图还可以看出,每种条件下,星形胶质细胞内 Ca^{2+} 浓度(「 Ca^{2+}]₄)幅值在细胞外环境 K⁺浓度 (K_{bath})等于 8mM 时都比 5mM 时显著升高.

图 1 不同细胞外 K⁺浓度(K_{bath})时,星形胶质细胞内 Ca²⁺浓度 ([Ca²⁺]_A)依赖于 VGCCs 电导(g_{VGCCs})和细胞外 Ca²⁺浓度(Ca_{bath}). Fig.1 Astrocyte Ca²⁺ concentration([Ca²⁺]_A) depends on the conductance of VGCCs(g_{VGCCs}) and extracellular calcium concentration (Ca_{bath}) with different extracellular potassium concentration(K_{bath}).

另外,对应图1中四种情况,我们给出了胞外 K⁺浓度 K_{hath} 从 5.0mM 升高至 8.0mM, 细胞外低 $Ca^{2+}(0.0001 \text{ mM})$ 且 VGCCs 阻塞($g_{VGCCs} = 0.0001$ pS)时(图 2(A));细胞外低 Ca²⁺(0.0001mM)且 VGCCs 电导正常(g_{VGCCs}=4.0 pS)时(图 2(B));细 胞外 Ca²⁺浓度(0.5mM)和 VGCCs 电导(g_{VGCCs}=4.0 pS)都正常时(图2(C));以及细胞外 Ca²⁺浓度正 常(0.5mM)且 VGCCs 电导增强(gvcccs = 74.4 pS) (图2(D))时星形胶质细胞膜去极化动作电位 (V₄)与胞内 Ca²⁺浓度瞬态幅值的相关曲线,如图 2 所示.从图 2 中我们发现,不论细胞外低 Ca²⁺环境 还是 Ca²⁺浓度正常, 细胞外环境 K⁺浓度(K_{bath}) 升 高会使得星形胶质细胞膜去极化程度与胞内 Ca²⁺ 浓度幅值增加,且星形胶质细胞内 Ca²⁺浓度的瞬态 幅值与星形胶质细胞膜去极化幅值成正比.这说明 细胞外 K⁺浓度升高是诱发星形胶质细胞膜去极化 的主要因素.而且,从图 2(A 和 B) 与图 2(C 和 D) 中可以发现,相同细胞外 K⁺环境时,不论细胞外低 Ca²⁺环境还是 Ca²⁺浓度正常, VGCCs 电导(g_{vccc}) 增强都会使星形胶质细胞膜去极化增强且胞内 Ca²⁺浓度瞬态幅值增加.特别地,胞外环境中Ca²⁺浓 度正常时, VGCCs 电导增强会使星形胶质细胞膜 产生非常剧烈的去极化现象,如图 2(C 和 D)所示. 这说明细胞星形胶质细胞膜去极化还依赖于细胞 外环境中 Ca²⁺浓度和 VGCCs 电导的强度.

2.2 VGCCs 电流增强诱导癫痫放电

实验发现, VGCCs 电流增强与神经系统癫痫 放电密切相关^[10].本节给出了没有外界刺激输入时

A.细胞外低Ca²⁺(0.0001mM)且VGCCs 阻塞(g_{vcccs}=0.0001pS)时星形胶质 细胞膜电压(V₄)与胞内Ca²⁺浓度 ([Ca²⁺],)瞬态幅值关系图.

b. The relations between astrocyte memorar potential (V_d) and its Ca²⁺ concentration ($[Ca^{2+}]_A$) with low extracellular Ca²⁺ concentration(0.0001mM) and nornal VGCCs current(g_{VGCCs} =4.0pS).

D.细胞外Ca^{*}浓度正常(0.5mM)且VGCCs 电导增强(g_{vocca}=74.4pS)时星形胶质 细胞膜电压(V_{i})与胞内Ca^{*}浓度 ([Ca^{*1}],)瞬态幅值关系图. D.The relations between astrocyte membrane potential (V_{a}) and its Ca^{*2} concentration ([Ca²⁺],) with normal extracellular Ca²⁺ concentration(0.5mM)and increased VGCCs current(gVGCCs=74.4pS).

图 2 随着细胞外 K⁺浓度升高,星形胶质细胞膜电压(V_A)与胞内 Ca²⁺浓度($[Ca^{2+}]_A$)瞬态幅值与成正比,且依赖于细胞外 Ca²⁺浓度 和 VGCCs 电流.

Fig.2 As extracellular K^{\ast} concentration increasing, astrocyte membrane potential (V_{A}) is proportional to the transients amplitude of astrocyte Ca^{2+} concentration ([Ca^{2+}]_A) and dependent on extracellular Ca^{2+} concentration and VGCCs currents.

VGCCs 电导(g_{vccc_s})增强诱发神经元癫痫放电的 临界阈值.模拟结果表明,没有外部刺激输入时,当 gvccc>4.6pS时会诱发神经元产生自发性类癫痫活 动(图3红色线条).这种癫痫放电活动是以2-15s 的"Depolarization block"为特征,与 Bikson 等人在 大鼠海马切片电生理实验中观察的结果相一致(图 1(D), [30]).图 3 给出了 g_{VGCCs} = 4 pS(图 3, 黑色 线条)和74.4 pS(图3,红色线条)时神经元与星形 胶质细胞膜电位、细胞外 K*浓度、星形胶质细胞内 K*浓度、Ca²⁺浓度、以及 IP,浓度的时间序列.我们 发现,gvcccs过大(gvcccs=74.4 pS)时神经元处于自 发性癫痫放电(图3(A)),对应的细胞外 K*浓度 [K⁺] 会产生更高的振荡幅值(接近 40mM)(图 3 (C)),同时,星形胶质细胞膜产生强的去极化膜电 ([图 3(B)), m], 星形胶质细胞内 K⁺浓度(图 3)(D))、Ca²⁺浓度(图 3(E))、以及 IP₃浓度(图 3 (F))都有非常大的振荡幅值.另外,从图 3(C 和 D)中还可以看出,自发性癫痫放电对应的胞外 K⁺

图 3 没有外界刺激输入时,VGCCs 电导 g_{VGCCs} 增大会诱发神经元 产生自发癫痫放电.当 g_{VGCCs} 等于 74.4pS (红色线条)和 4pS(黑色 线条)时,神经元膜电位(V_N),星形胶质细胞膜电位(V_A)、细胞外 空间 K⁺浓度([K⁺]_o)、星形胶质细胞内 K⁺浓度([K⁺]_A)、星形胶 质细胞内 Ca²⁺浓度([Ca²⁺]_A)、以及星形胶质细胞内 IP₃ 浓度 ([P₃]_A 的时间序列.

Fig.3 Increased astrocytic VGCCs conductance g_{VGCCs} induces spontaneous epileptic seizures in the absence of external stimuli. Time trains of the neural (V_N) and astrocytic membrane potential (V_A) , extracellular K^+ concentration $([K^+]_o)$, K^+ concentration $([K^+]_A)$ and Ca^{2+} concentration $([Ca^{2+}]_A)$ and $IP_3([IP_3]_A)$ in astrocyte when g_{VGCCs} is 4. OpS ((black lines) and 74.4pS(red lines).

浓度不仅需要更长的时间回到基线,且星形胶质细胞内 K⁺浓度缓慢上升到较低的 K⁺浓度峰值(与 g_{veccs} = 4.0pS 时相比).

3 结论

考虑星形胶质细胞膜去极化激活的 VGCCs 钙 离子电流,本文构建了一种神经元-星形胶质细胞 耦合模型,模型详细刻画了细胞内外钾离子,钙离 子,以及钠离子代谢与星形胶质细胞膜去极化机 制.数值模拟结果论证了 VGCCs 电流是影响星形 胶质 细胞 中钙离子浓度水平的一个主要因 素^[11,13];发现随着细胞外环境中钾离子浓度的升 高,星形胶质细胞内钙离子瞬态幅值与胶质细胞膜 去极化成正比;并且星形胶质细胞膜去极化与胞内 钙离子浓度的升高还依赖于细胞外空间钙离子浓 度与 VGCCs 电导增加会诱发神经元产生自发性癫 痫放电的实验结果^[10].给出了 VGCCs 电流增强诱 发癫痫的机制: VGCCs 电导增加会使得星形胶质 细胞内钙离子浓度振荡幅值增加,导致星形胶质细 胞对神经元的正反馈作用增强,从而提高神经元的 兴奋性,最终导致胞外钾离子"过量"诱发癫痫.

本文旨在建立考虑钠离子和钾离子代谢的神 经元-星形胶质细胞耦合模型,研究星形胶质细胞 电压门控钙离子通道电流增强改变星形胶质细胞 胞内钙离子浓度诱发神经系统癫痫放电的内在机 制.为替代药物作用在神经元上对人体的负面影 响^[31],从调控星形胶质细胞电压门控钙离子通道 改变星形胶质细胞钙离子水平作为治疗癫痫疾病 的新靶点提供理论指导.

参考文献

- 1 Ohno Y, Tokudome K, Kunisawa N, et al. Role of astroglial Kir4.1 channels in the pathogenesis and treatment of epilepsy. *Therapeutic Targets for Neurological Diseases*, 2015,2:1~10
- 2 Kucheryavykh Y V, Kucheryavykh L Y, Nichols C G, et al. Downregulation of Kir4.1 inward rectifying potassium channel subunits by RNAi impairs potassium transfer and glutamate uptake by cultured cortical astrocytes. *Glia*, 2007,55(3):274~281
- 3 Seifert G, Steinhäuser C. Neuron-astrocyte signaling and epilepsy. *Experimental Neurology*, 2013,244(6):4~10
- 4 Butt A M, Kalsi A. Inwardly rectifying potassium channels (Kir) in central nervous system glia: a special role for Kir4.1 in glial functions. *Journal of cellular and molecular medicine*, 2006,10(1):33~44
- 5 Volman V, Bazhenov M, Sejnowski T J. Computational models of neuron-astrocyte interaction in epilepsy. Frontiers in Computational Neuroscience, 2012,6:58
- 6 Walz W, Hertz L. Intracellular ion changes of astrocytes in response to extracellular potassium. *Journal of Neuro*science Research, 1983,10(4):411~423
- 7 Walz W, Hertz L. Intense furosemide-sensitive potassium accumulation in astrocytes in the presence of pathologically high extracellular potassium levels. *Journal of Cereb Blood Flow Metab*, 1984,4(2):301~304
- 8 Fleischmann B K, Washabau R J, Kotlikoff M I. Control of resting membrane potential by delayed rectifier potassium currents in ferret airway smooth muscle cells. *The Journal of Physiology*, 1993,469(1):625~638
- 9 Isom L. Auxiliary subunits of voltage-gated ion channels. Neuron, 1994, 12(6):1183~1194
- 10 Westenbroek R. Upregulation of L-type Ca²⁺ channels in reactive astrocytes after brain injury, hypomyelination, and ischemia. *The Journal of Neuroscience*, 1998, 18(7):2321

-34

- 11 MacVicar B. Voltage-dependent calcium channels in glial cells. Science, 1984,226(4680):1345~1347
- 12 Duffy S, Macvicar B A. In vitro ischemia promotes calcium influx and intracellular calcium release in hippocampal astrocytes. *The Journal of Neuroscience*, 1996, 16(1):71~81
- 13 Duffy S, MacVicar B A. Potassium-dependent calcium influx in acutely isolated hippocampal astrocytes. *Neuroscience*, 1994,61(1):51~61
- 14 Bezzi P, Carmignoto G, Pasti L, et al. Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. *Nature*, 1998, 391(6664):281~285
- 15 Gómez-Gonzalo, Marta, Losi G, et al. An excitatory loop with astrocytes contributes to drive neurons to seizure Threshold. *Plos Biology*, 2010,8(4):e1000352
- 16 Heuser K, Eid T, Lauritzen F, et al. Loss of perivascular Kir4.1 potassium channels in the sclerotic hippocampus of patients with mesial temporal lobe epilepsy. *Journal of Neuropathology & Experimental Neurology*, 2012,71(9): 814~825
- 17 Sibille, Jérémie, Dao Duc K, et al. The neuroglial potassium cycle during neurotransmission: role of Kir4.1 channels. *Plos Computational Biology*, 2015, 11(3):e1004137
- 18 Mengmeng D, Jiajia L, Liang C, et al. Astrocytic Kir4.1 channels and gap junctions account for spontaneous epileptic seizure. *Plos Computational Biology*, 2018, 14(3): e1005877
- 19 Nadkarni S, Jung P. Spontaneous oscillations of dressed neurons: a new mechanism for epilepsy? *Physical Review Letters*, 2003,91(26 Pt 1):268101
- 20 刘建,杨利建,刘望恒,等.星形胶质细胞引起神经元超激发的作用机制分析.生物物理学报,2011,27(1):57~ 65(Liu J, Yang J L, Liu W H, et al. An analysis on the mechanism of astrocytes cause neuronal hyper-excitability. *Acta Biophysica Sinica*, 2011,27(1):57~65(in Chinese))
- 21 Li J, Wang R, Du M, et al. Dynamic transition on the seizure-like neuronal activity by astrocytic calcium channel block. *Chao*, *Solitons & Fractals*, 2016,91:702~708
- 22 Li J, Tang J, Ma J, et al. Dynamic transition of neuronal firing induced by abnormal astrocytic glutamate oscillation. *Scientific Reports*, 2016,6(1):32343
- 23 王磊,蔡景霞.星形胶质细胞存在L型钙通道的新证据. 动物学研究,2007,28(5):38(Wang L, Cai J X. New proof for astrocytes having L-type calcium channels. *Zoo-logical Research*, 2007,28(5):38(in Chinese))
- 24 Zeng S, Li B, Zeng S, et al. Simulation of spontaneous Ca²⁺ oscillations in astrocytes mediated by voltage-gated calcium channels. *Biophysical Journal*, 2009, 97 (9): 2429~2437
- 25 Li B, Chen S, Zeng S, et al. Modeling the contributions of Ca²⁺ flows to spontaneous Ca²⁺ oscillations and cortical

spreading depression-triggered Ca²⁺ waves in astrocyte networks. *Plos One*, 2012,7(10):e48534

- 26 Jr J R C, Ullah G, Ziburkus J, et al. The influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states: I.Single neuron dynamics. *Journal of Computational Neuroscience*, 2009, 26(2):159 ~70
- 27 Du M, Li J, Wang R, et al. The influence of potassium concentration on epileptic seizures in a coupled neuronal model in the hippocampus. *Cognitive Neurodynamics*, 2016,10(5):405~414
- 28 Ullah G, Cressman J R, Barreto E, et al. The influence of sodium and potassium dynamics on excitability, seizures,

and the stability of persistent states: II. Network and glial dynamics. *Journal of Computational Neuroscience*, 2009, 26(2):171~183

- 29 Li Y X, Rinzel J. Equations for InsP₃ receptor-mediated [Ca²⁺]_i oscillations derived from a detailed kinetic model: a hodgkin-huxley like formalism. *Journal of Theoretical Biology*, 1994, 166(4):461~473
- 30 Bikson M. Depolarization block of neurons during maintenance of electrographic seizures. *Journal of Neurophysiolo*gy, 2003,90(4):2402~2408
- 31 Yukihiro O. Astrocytic Kir4.1 potassium channels as a novel therapeutic target for epilepsy and mood disorders. *Neural Regeneration Research*, 2018, 13(4):651~652

VOITAGE-GATED CALCIUM CHANNELS IN ASTRCOCYTES REGULATING EPILEPTIC SEIZURES*

Du Mengmeng¹ Yuan Zhixuan¹ Li Jiajia¹ Wu Ying^{1,2†}

(1. School of Aerospace Engineering, State Key Laboratory for Strength and Vibration of Mechanical Structures,

Xi' an Jiaotong University, Xi' an 710049 China) (2. National Demonstration Center for Experimental Mechanics

Education, Xi' an Jiaotong University, Xi' an 710049 China)

Abstract The accumulation of extracellular potassium (K^+) concentration induces astrocytes membrane depolarization, which causes the voltage-gated calcium channel (VGCCs) current flow into astrocyte and increases the level of calcium concentration in astrocyte, thus enhancing the positive feedback effect of astrocyte on neuron. In this work, we presented a neuron-astrocyte coupled model consisting of ions concentration dynamics. Our model validated experimental recordings that Ca²⁺ influx through VGCCs is a major factor in the increase of Ca²⁺ concentration in astrocyte and revealed the internal mechanism that enhanced VGCCs current could induce spontaneous epileptic discharges in the absence of external stimulus input. The results in this work will provide an explanation for Ca²⁺ metabolism disorders of astrocytes can induce spontaneous epilepsy discharges.

Key words astrocyte, VGCCs, calcium, seizures

Received 30 August 2019, revised 26 November 2019.

^{*} The project supported by the National Natural Science Foundation of China(11772242)

[†] Corresponding author E-mail:wying36@xjtu.edu.cn