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摘要　 本文研究具有忆阻的两耦合 Ｈｉｎｄｍａｒｓｈ￣Ｒｏｓｅ 神经元系统ꎬ考虑了神经元间信号传输过程中的时滞效

应.借助平衡点的稳定性分析ꎬ获得与时滞相关的稳定条件.通过数值算例验证理论结果ꎬ揭示各类丰富而有

趣的动力学现象ꎬ如多种簇放电行为等.搭建相应的耦合神经元电路实验平台ꎬ取得与理论分析和数值计算

相吻合的结果.研究结果表明ꎬ时滞是影响系统稳定性和放电模式的重要因素.
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引言

神经元是神经系统基本的结构和功能单元.２０
世纪 ５０ 年代ꎬＨｏｄｇｋｉｎ 和 Ｈｕｘｌｅｙ 在研究乌贼神经

轴突电生理活动中提出了著名的 Ｈｏｄｇｋｉｎ￣Ｈｕｘｌｅｙ
(Ｈ￣Ｈ)神经元模型[１] .１９６１ 年ꎬＦｉｔｚＨｕｇｈ 提出了二

维简化模型ꎬ并由 Ｎａｇｕｍｏ 构建了相应的电路.在此

基础上ꎬＨｉｎｄｍａｒｓｈ 和 Ｒｏｓｅ 提出了具有慢时间尺度

的三维系统ꎬ可用于模拟神经元的簇放电特性[２] .
随后ꎬ有关 ＨＲ 神经元网络动力学研究的报道不断

涌现[３ꎬ４ꎬ６－８] .
由于信号传输速度的有限性和递质释放的滞

后ꎬ时滞在神经网络中是难以避免的.已有研究表

明ꎬ耦合过程中的时滞会显著影响到系统的稳定性

和同步模式等动力学特性[５－８] .Ｌａｋｓｈｍａｎａｎ 等人[６]

研究了含时滞的 ＨＲ 神经元的稳定性、Ｈｏｐｆ 分岔、
混沌及其控制ꎬ并给出了非线性反馈控制策略以实

现主从 ＨＲ 神经元之间的同步.Ｓｔｅｕｒ 等人[７]考察了

不同拓扑结构情况下时滞耦合 ＨＲ 神经网络的同

步和部分同步ꎬ并给出了相应的电路实验结果.
美国惠普公司实验室 Ｓｔｒｕｋｏｖ 等人在极小型电

路中证实了忆阻的存在[９] .忆阻器是一种有记忆功

能的非线性电阻元件[１０]ꎬ可用于模拟神经元的突

触结构[１１] .Ｚｈａｎｇ 等人[１２] 研究了基于忆阻的耦合

ＦｉｔｚＨｕｇｈ￣Ｎａｇｕｍｏ 神经元模型ꎬ探讨了初始条件对

于混沌振荡以及同步过程的影响机制. Ｔｈｏｔｔｉｌ 等

人[１３]分析了不同忆阻形式耦合的两 ＨＲ 神经元网

络ꎬ揭示了同步、振荡死亡、混沌以及“ ｎｅａｒ￣ｄｅａｔｈ
ｒａｒｅ ｓｐｉｋｅｓ”等有趣的动力学行为.

本文研究忆阻型 ＨＲ 神经网络的动力学行为.
该网络由两个含自连接的 ＨＲ 神经元通过双向时

滞连接相互耦合而成ꎬ在自连接和互连接上均考虑

了忆阻.

１　 平衡点的稳定性分析

本文的忆阻器模型如文献[１１]所示ꎬ相应的

耦合神经元网络可用以下一组时滞微分方程描述:

ｘ􀅰１ꎬ２ ＝ ｙ１ꎬ２－ａｘ３
１ꎬ２＋ｂｘ２

１ꎬ２－ｚ１ꎬ２＋Ｉ＋

　 　 ｋｗ１ꎬ２ ｆ(ｘ２ꎬ１( ｔ－τ))＋ｐｗ３ꎬ４ ｆ(ｘ１ꎬ２)

ｙ􀅰１ꎬ２ ＝ ｃ－ｄｘ２
１ꎬ２－ｙ１ꎬ２

ｚ􀅰１ꎬ２ ＝ ｒ( ｓ(ｘ１ꎬ２＋ｘ０)－ｚ１ꎬ２)

ｖ􀅰１ꎬ２ ＝ －ｖ１ꎬ２＋ ｆ(ｘ２ꎬ１( ｔ－τ))

ｕ􀅰１ꎬ２ ＝ －ｕ１ꎬ２＋ ｆ(ｘ１ꎬ２)
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(１)

其中ꎬａꎬｂꎬｃꎬｄꎬｒꎬｓꎬｘ０ 为系统参数ꎬＩ 为外激励ꎬｗ１ꎬ２

＝α－β ｆ(ｖ１ꎬ２)分别为神经元 １ 和 ２ 间的连接强度ꎬ

ｗ３ꎬ４ ＝γ－φ ｆ(ｕ１ꎬ２)分别为神经元 １ 和 ２ 上的连接强

度ꎬｋ 和 ｐ 分别为耦合强度与自连接强度ꎬτ 为耦合
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时滞ꎬｆ 为双曲正切函数.
若系统(１)存在平衡点 Ｅ０(ｘ１０ꎬｙ１０ꎬｚ１０ꎬｖ１０ꎬｕ１０ꎬ

ｘ２０ꎬｙ２０ꎬｚ２０ꎬｖ２０ꎬｕ２０)ꎬ引入坐标变换 ｘｉ ＝ ｘｉ－ｘｉ０ꎬｙｉ ＝ ｙｉ

－ｙｉ０ꎬｚｉ ＝ ｚｉ －ｚｉ０ꎬｖｉ ＝ ｖｉ －ｖｉ０ꎬｕｉ ＝ ｕｉ －ｕｉ０ꎬ再将 ｘｉꎬｙｉꎬｚｉꎬ

ｖｉꎬｕｉ 分别改写为 ｘｉꎬｙｉꎬｚｉꎬｖｉꎬｕｉꎬ则有

ｘ􀅰１ꎬ２ ＝ ｙ１ꎬ２＋ｙ１０ꎬ２０－ａ(ｘ１ꎬ２＋ｘ１０ꎬ２０) ３＋

ｂ(ｘ１ꎬ２＋ｘ１０ꎬ２０) ２－ｚ１ꎬ２－ｚ１０ꎬ２０＋Ｉ＋

ｋ(α－βｆ(ｖ１ꎬ２＋ｖ１０ꎬ２０))􀅰

ｆ(ｘ２ꎬ１( ｔ－τ)＋ｘ２０ꎬ１０)＋ｐ(γ－

φｆ(ｕ１ꎬ２＋ｕ１０ꎬ２０))􀅰ｆ(ｘ１ꎬ２＋ｘ１０ꎬ２０)

ｙ􀅰１ꎬ２ ＝ ｃ－ｄ(ｘ１ꎬ２＋ｘ１０ꎬ２０) ２－ｙ１ꎬ２－ｙ１０ꎬ２０

ｚ􀅰１ꎬ２ ＝ ｒ( ｓ(ｘ１ꎬ２＋ｘ１０ꎬ２０＋ｘ０)－ｚ１ꎬ２－ｚ１０ꎬ２０)

ｖ􀅰１ꎬ２ ＝ －ｖ１ꎬ２－ｖ１０ꎬ２０＋ｆ(ｘ２ꎬ１( ｔ－τ)＋ｘ２０ꎬ１０)

ｕ􀅰１ꎬ２ ＝ －ｕ１ꎬ２－ｕ１０ꎬ２０＋ｆ(ｘ１ꎬ２＋ｘ１０ꎬ２０)
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(２)

对于对称平衡点 Ｅ′０( ｘ１０ꎬｙ１０ꎬ ｚ１０ꎬｖ１０ꎬｕ１０ꎬｘ１０ꎬｙ１０ꎬ

ｚ１０ꎬｖ１０ꎬｕ１０)ꎬ在其附近线性化系统的特征方程为

Δ(λꎬτ)＝
λＩ－Ａ －Ｂ
－Ｂ λＩ－Ａ

＝Δ＋(λꎬτ)􀅰Δ－(λꎬτ)＝

(Ｐ(λ)＋Ｑ(λ)ｅ－λτ)􀅰(Ｐ(λ)－Ｑ(λ)ｅ－λτ)＝ ０
(３)

其中ꎬＰ (λ) ＝ ((λ ＋ ｒ) ((λ ＋ １) (λ ＋ ｈ１ ) ＋ ２ｄｘ１０ －

ｈ３ｈ５) ＋ (λ ＋ １) ｒｓ) (λ＋１) ２ꎬＱ (λ) ＝ ((λ ＋ １) ｈ４ －

ｈ２ｈ５)(λ ＋ ｒ) (λ ＋ １) ２ꎬ ｈ１ ＝ ３ａｘ２
１０ － ２ｂｘ１０ － ｐ ( γ －φｆ

(ｕ１０))(１－ｆ ２(ｘ１０))ꎬｈ２ ＝ ｋβｆ(ｘ１０)(１－ｆ ２( ｖ１０))ꎬｈ３

＝ ｐφｆ(ｘ１０)(１－ｆ ２(ｕ１０))ꎬｈ４ ＝ －ｋ(α－βｆ( ｖ１０))(１－ｆ ２

(ｘ１０))ꎬｈ５ ＝ ｆ ２(ｘ１０)－１ꎬ

Ａ＝

－ｈ１ １ －１ －ｈ２ －ｈ３

－２ｄｘ１０ －１ ０ ０ ０

ｒｓ ０ －ｒ ０ ０
０ ０ ０ －１ ０

－ｈ５ ０ ０ ０ －１
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ꎬ

Ｂ＝

ｈ４ｅ
－λτ ０ ０ ０ ０

０ ０ ０ ０ ０
０ ０ ０ ０ ０

ｈ５ｅ
－λτ ０ ０ ０ ０

０ ０ ０ ０ ０
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为确定系统的稳定性ꎬ假设 λ ＝ ｉω 为式(３)的一对

纯虚根ꎬ分离 Δ∓(ｉωꎬτ)＝ ０ 的实部和虚部可得:

ＰＲ(ω)∓ＱＲ(ω)ｃｏｓ(ωτ)∓ＱＩ(ω)ｓｉｎ(ωτ)＝ ０

ＰＩ(ω)∓ＱＩ(ω)ｃｏｓ(ωτ)±ＱＲ(ω)ｓｉｎ(ωτ)＝ ０{
(４)

其中ꎬＰＲ(ω)＝ ｌ１ω４＋ｌ２ω２＋ｌ３ꎬＰＩ(ω)＝ ω５＋ｌ４ω３＋ｌ５ωꎬ
ＱＲ(ω)＝ ｌ６ω４＋ｌ７ω２＋ｌ８ꎬＱＩ(ω)＝ ｌ９ω３＋ｌ１０ωꎬｌ１ ＝ ｈ１＋ｒ＋
３ꎬｌ２ ＝ －(２ｄｘ１０－ｈ３ｈ５)( ｒ＋２)－３(ｈ１( ｒ＋１)＋ｒ( ｓ＋１))－
１ꎬｌ３ ＝ ２ｄｒｘ１０－ｈ３ｈ５ｒ＋ｈ１ｒ＋ｒｓꎬｌ４ ＝ －２ｄｘ１０－ｈ１ｒ＋ｈ３ｈ５－ｒｓ
－３ｈ１－３ｒ－３ꎬｌ５ ＝(２ｄｘ１０－ｈ３ｈ５)(２ｒ＋１)＋３ｒ(ｈ１＋ｓ)＋ｈ１

＋ｒꎬｌ６ ＝ ｈ４ꎬ ｌ７ ＝ ｈ２ｈ５( ｒ ＋ ２) － ３ｈ４( ｒ ＋ １)ꎬ ｌ８ ＝ ｒ( ｈ４ －
ｈ２ｈ５)ꎬｌ９ ＝ －ｈ４( ｒ＋３)＋ｈ２ｈ５ꎬｌ１０ ＝ －ｈ２ｈ５(２ｒ＋１)＋ｈ４(３ｒ
＋１).
消去式(４)中的谐波项ꎬ可得:

Ｄ∓(ω)＝ ω１０＋ｇ１ω８＋ｇ２ω６＋ｇ３ω４＋ｇ４ω２＋ｇ５ ＝ ０

(５)
其中ꎬｇ１ ＝ ｌ２１－ｌ２６＋２ｌ４ꎬｇ２ ＝ ２ｌ１ ｌ２＋ｌ２４－２ｌ６ ｌ７－ｌ２９＋２ｌ５ꎬｇ３ ＝

２ｌ１ ｌ３－２ｌ１０ ｌ９ ＋ ｌ２２ ＋２ｌ４ ｌ５ －２ｌ６ ｌ８ － ｌ２７ꎬｇ４ ＝ － ｌ２１０ ＋２ｌ２ ｌ３ ＋ ｌ２５ －

２ｌ７ ｌ８ꎬｇ５ ＝ ｌ２３－ｌ２８ .若式(５)存在正实根 ω∓
ｉ ꎬ则相应的

临界时滞为 τ∓
ｉꎬｊ ＝(Φ∓

ｉ ＋２ｊπ) / ω∓
ｉ ꎬｊ ＝ ０ꎬ１ꎬ􀆺ꎬΦ∓

ｉ ∈
[０ꎬ２π)且满足

ｓｉｎ(Φ∓
ｉ )＝

±ＰＲ(ω∓
ｉ )ＱＩ(ω∓

ｉ )∓ＰＩ(ω∓
ｉ )ＱＲ(ω∓

ｉ )
Ｑ２

Ｒ(ω∓
ｉ )＋Ｑ２

Ｉ(ω∓
ｉ )

ｃｏｓ(Φ∓
ｉ )＝

±ＰＲ(ω∓
ｉ )ＱＲ(ω∓

ｉ )±ＰＩ(ω∓
ｉ )ＱＩ(ω∓

ｉ )
Ｑ２

Ｒ(ω∓
ｉ )＋Ｑ２

Ｉ(ω∓
ｉ )

ì

î

í

ï
ïï

ï
ïï

(６)
根据时滞动力系统的稳定性和分叉理论[１４] 可

知:若式(５)没有正实根ꎬ则系统(１)平衡点的稳定

性与时滞无关ꎻ若存在正实根ꎬ则系统可能发生有

限次的稳定性切换ꎬ且最终是不稳定的.

２　 数值算例

(１)系统参数取为 ａ＝ １ꎬｂ＝ ３ꎬｃ＝ １ꎬｄ ＝ ５ꎬｓ ＝ １ꎬ
ｘ０ ＝ １.６ꎬＩ ＝ １ꎬｒ ＝ ０.００６ꎬｋ ＝ ０.８ꎬα ＝ １ꎬβ ＝ ０.７２ꎬｐ ＝
－０.８ꎬγ＝ １ꎬφ＝ ０.６.经计算可知ꎬ系统(１)存在对称

平衡点 Ｅ０(０.２５２ꎬ０.６８３ꎬ１.８５２ꎬ０.２４７ꎬ０.２４７ꎬ０.２５２ꎬ
０.６８３ꎬ１.８５２ꎬ０.２４７ꎬ０.２４７).本文主要分析此平衡点

的局部稳定性.当不含时滞时ꎬ系统(１)存在正实部

特征根ꎬ则平衡点不稳定.当存在时滞时ꎬ求解式

(５)可得 ω∓
１ ＝ １.０１ 和 ω∓

２ ＝ １.６５９ꎬ对应的临界时滞

分别为 τ－
１ꎬｊ ＝ ３.６１ꎬ９.８６ꎬ􀆺ꎬτ－

２ꎬｊ ＝ ０.９７ꎬ４.７６ꎬ􀆺ꎬτ＋
１ꎬｊ

＝ ０.４９ꎬ６.７４ꎬ􀆺ꎬτ＋
２ꎬｊ ＝ ２.８７ꎬ６.６５ꎬ􀆺.随着时滞由零

不断增大ꎬ每当跨越临界时滞 τ∓
１ꎬｊ时ꎬΔ∓(λꎬτ)＝ ０

４３
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有一对特征根自右向左穿过虚轴ꎻ每当跨过临界时

滞 τ∓
２ꎬｊ时ꎬΔ∓(λꎬτ) ＝ ０ 有一对特征根自左向右穿

过虚轴.因此ꎬ系统(１)在跨越临界时滞 τ＋
１ꎬ０后处于

稳定状态ꎬ而当跨过 τ－
２ꎬ０后平衡点失稳ꎬ并出现周

期运动.综上可知ꎬ系统平衡点的稳定区域为(τ＋
１ꎬ０ꎬ

τ－
２ꎬ０)ꎬ不稳定区域为(０ꎬτ＋

１ꎬ０)∪(τ－
２ꎬ０ꎬ＋¥).

如图 １(ａ)所示ꎬ当 τ ＝ ０.４５ 时ꎬ两神经元的运

动趋于完全同步的周期振荡状态ꎻ图 １(ｂ)表示当 τ
＝ ０.５５ 时ꎬ系统运动状态收敛到稳定的平衡点处ꎻ
图 １(ｃ)表明当 τ ＝ １ 时ꎬ平衡点失去稳定ꎬ两神经

元出现异步周期振荡.上述现象表明:随着时滞的

变化ꎬ系统经历了同步周期振荡、稳定平衡态以及

异步周期振荡.

图 １　 系统(１)的响应

Ｆｉｇ.１　 Ｔｈｅ ｒｅｓｐｏｎｓｅｓ ｏｆ ｔｈｅ ｓｙｓｔｅｍ(１)

　 　 (２)系统参数取为 ａ＝ １ꎬｂ ＝ ３ꎬｃ＝ １ꎬｄ ＝ ５ꎬｓ ＝ ４ꎬ
ｘ０ ＝ １.６ꎬＩ ＝ ２ꎬｒ ＝ ０.００５ꎬｋ ＝ ０.８ꎬα ＝ １ꎬβ ＝ ０.７２ꎬｐ ＝
－０.８ꎬγ＝ １ꎬφ＝ ０.７４.图 ２ 为系统(１)随时滞变化的

响应.

图 ２　 系统(１)放电模式

Ｆｉｇ.２　 Ｆｉｒｉｎｇ ｐａｔｔｅｒｎｓ ｏｆ ｔｈｅ ｓｙｓｔｅｍ(１)

如图 ２(ａ)所示ꎬ无时滞时ꎬ神经元出现了周期

３ 的簇放电行为ꎻ当 τ＝ ０.６ 时ꎬ图 ２(ｂ)表明神经元
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簇放电中的峰增加了一个ꎬ产生了周期 ４ 的簇放

电ꎻ随着时滞不断增加ꎬ如图 ２(ｃ) ~ (ｅ)所示ꎬ簇放

电中峰的个数由五逐步增加到七.图 ２ 表明神经元

放电呈现加周期分叉的规律.

３　 电路仿真

如图 ３ 所示ꎬ电路仿真实验由 ＨＲ 神经元电

路、时滞电路、忆阻器电路等组成.其中ꎬＨＲ 神经元

电路由积分电路、加法电路以及乘法电路等组成ꎻ
时滞模块 ｄｅｌａｙ 由 ＲＣ 低通滤波器实现[１５]ꎻ忆阻器

模块 Ｗｉ由￣ｔａｎｈ 电路和乘法电路等模块构成[１５]ꎬ而
负双曲正切函数电路模块则由三极管、运算放大器

以及电阻等器件构成.
图 ３ 所示的电路系统可用如下方程描述:

Ｒ ｉꎬ１Ｃ ｉꎬ１

ｄＸ１ꎬ２

ｄｔ′
＝
Ｒ ｉꎬ４

Ｒ ｉꎬ７
Ｙ１ꎬ２－

Ｒ ｉꎬ４

Ｒ ｉꎬ８
Ｘ３

１ꎬ２＋
Ｒ ｉꎬ４

Ｒ ｉꎬ９
Ｘ２

１ꎬ２－
Ｒ ｉꎬ４

Ｒ ｉꎬ１０
Ｚ１ꎬ２＋

Ｒ ｉꎬ１２

Ｒ ｉꎬ１１＋Ｒ ｉꎬ１２
􀅰

Ｒ ｉꎬ４

Ｒ ｉꎬ１３
􀅰Ｖｃｃ＋(

Ｒ ｉꎬ４

Ｒａ１ꎬ２
－

　 　
０.１Ｒ ｉꎬ４

Ｒｂ１ꎬ２
ｆ(Ｖ１ꎬ２)) ｆ(Ｘ２ꎬ１( ｔ′－τ′))＋(

Ｒ ｉꎬ４

Ｒａ３ꎬ４
－
０.１Ｒ ｉꎬ４

Ｒｂ３ꎬ４
ｆ(Ｕ１ꎬ２)) ｆ(Ｘ１ꎬ２)

Ｒ ｉꎬ２Ｃ ｉꎬ２

ｄＹ１ꎬ２

ｄｔ′
＝

Ｒ ｉꎬ１５

Ｒ ｉꎬ１４＋Ｒ ｉꎬ１５
􀅰

Ｒ ｉꎬ５

Ｒ ｉꎬ１６
􀅰Ｖｃｃ－

Ｒ ｉꎬ５

Ｒ ｉꎬ１７
Ｙ１ꎬ２－

Ｒ ｉꎬ５

Ｒ ｉꎬ１８
Ｘ２

１ꎬ２

Ｒ ｉꎬ３Ｃ ｉꎬ３

ｄＺ１ꎬ２

ｄｔ′
＝

Ｒ ｉꎬ２０

Ｒ ｉꎬ１９＋Ｒ ｉꎬ２０
􀅰

Ｒ ｉꎬ６

Ｒ ｉꎬ２１
􀅰Ｖｃｃ－

Ｒ ｉꎬ６

Ｒ ｉꎬ２２
Ｚ１ꎬ２＋

Ｒ ｉꎬ６

Ｒ ｉꎬ２３
Ｘ１ꎬ２

ＲＣ
ｄＶ１ꎬ２

ｄｔ′
＝ －Ｖ１ꎬ２＋ｆ(Ｘ２ꎬ１( ｔ′－τ′))

ＲＣ
ｄＵ１ꎬ２

ｄｔ′
＝ －Ｕ１ꎬ２＋ｆ(Ｘ１ꎬ２)

ì

î

í

ï
ï
ï
ï
ï
ï
ï
ï
ï

ï
ï
ï
ï
ï
ï
ï
ï
ï

(７)

其中ꎬＸ ｉꎬＹｉꎬＺ ｉꎬＶｉꎬＵｉ 分别表示第 ｉ 个神经元的输

出电压.显然ꎬ式(１)为上述电路方程的无量纲形

式ꎬ其参数与电路参数之间满足下列关系:ｔ ＝ ｔ′ / Ｒ ｉꎬｊ

Ｃ ｉꎬｊꎬτ＝τ′ / Ｒ ｉꎬｊＣ ｉꎬｊ .

图 ３　 系统(７)电路原理图

Ｆｉｇ.３　 Ａ ｃｉｒｃｕｉｔ ｉｍｐｌｅｍｅｎｔａｔｉｏｎ ｏｆ ｔｈｅ ｓｙｓｔｅｍ(７)

　 　 (１)电路参数为:Ｒｉꎬ１ ＝ １ＫΩꎬＲｉꎬ２ ＝ １ＫΩꎬＲｉꎬ３ ＝
１ＫΩꎬＲｉꎬ４ ＝ １０ＫΩꎬ Ｒｉꎬ５ ＝ １０ＫΩꎬ Ｒｉꎬ６ ＝ １ＫΩꎬ Ｒｉꎬ７ ＝

１０ＫΩꎬＲｉꎬ８ ＝ １０ＫΩꎬＲｉꎬ９ ＝ ３.３ＫΩꎬＲｉꎬ１０ ＝ １０ＫΩꎬＲｉꎬ１１ ＝
９ＫΩꎬＲｉꎬ１２ ＝ １ＫΩꎬＲｉꎬ１３ ＝ １５ＫΩꎬＲｉꎬ１４ ＝ ９ＫΩꎬＲｉꎬ１５ ＝
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１ＫΩꎬＲｉꎬ１６ ＝ １５ＫΩꎬＲｉꎬ１７ ＝ １０ＫΩꎬＲｉꎬ１８ ＝ ２ＫΩꎬＲｉꎬ１９ ＝
１４.６ＫΩꎬＲｉꎬ２０ ＝１ＫΩꎬＲｉꎬ２１ ＝ １００ＫΩꎬＲｉꎬ２２ ＝ １６６.６７ＫΩꎬ
Ｒｉꎬ２３ ＝１６６.６７ＫΩꎬＲｇꎬｎ ＝ １ＫΩꎬＣｉꎬｊ ＝ １μＦꎬＶｃｃ ＝ １５Ｖꎬｉ ＝
１ꎬ２ꎬｊ＝ １ꎬ２ꎬ３ꎬｎ ＝ １ꎬ２ꎬ􀆺ꎬ２４.忆阻器中电阻参数为

Ｒａ１ ＝ Ｒａ２ ＝ １２. ５ＫΩꎬＲｂ１ ＝ Ｒｂ２ ＝ １. ７４ＫΩꎬＲａ３ ＝ Ｒａ４ ＝
１２.５ＫΩꎬＲｂ３ ＝Ｒｂ４ ＝ ２.１ＫΩꎬＲ ＝ １ＫΩꎬＣ ＝ １μＦ.如图 ４
所示ꎬ电路 Ｘ ｉ的输出电压经历同步周期振荡、直流

电压、反相同步周期振荡.图 ５ 为随着时滞变化ꎬｘ１

的振幅和频率的数值计算与电路仿真结果的对比

图.显然ꎬ两者相吻合.

图 ４　 系统(７)Ｘｉ的输出电压

Ｆｉｇ.４　 Ｔｈｅ ｏｕｔｐｕｔ ｖｏｌｔａｇｅｓ Ｘｉ ｉｎ ｔｈｅ ｓｙｓｔｅｍ(７)

图 ５　 电路仿真与数值结果对比图

Ｆｉｇ.５　 Ｔｈｅ ｒｅｓｕｌｔｓ ｏｆ ｃｉｒｃｕｉｔ ｓｉｍｕｌａｔｉｏｎｓ ａｎｄ ｎｕｍｅｒｉｃａｌ ｃｏｍｐｕｔａｔｉｏｎｓ

　 　 (２)电路参数为 Ｒ ｉꎬ１３ ＝ ７.５ＫΩꎬＲ ｉꎬ１９ ＝ ３.６９ＫΩꎬ
Ｒ ｉꎬ２２ ＝ ２００ＫΩꎬＲ ｉꎬ２３ ＝ ５０ＫΩꎬＲｂ３ ＝Ｒｂ４ ＝ １.６９ＫΩꎬ其他

参数不变.如图 ６ 所示ꎬ随着时滞的增加ꎬ神经元 Ｘ ｉ

的簇放电模式经历了由周期 ３ 到周期 ７ 的转迁.通
过对比图 ２ 和图 ６ 可知ꎬ电路仿真结果与数值计算

相一致.
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图 ６　 电路系统(７)的放电模式

Ｆｉｇ.６　 Ｆｉｒｉｎｇ ｐａｔｔｅｒｎｓ ｏｆ ｔｈｅ ｃｉｒｃｕｉｔ ｓｙｓｔｅｍ(７)

４　 结论

本文研究了含时滞的忆阻耦合 ＨＲ 神经元系

统.通过解耦与分析特征方程ꎬ讨论了平衡点的局

部稳定性.借助数值算例验证了理论分析的结果ꎬ
揭示了丰富的动力学现象.基于 ＨＲ 神经元电路、
忆阻电路以及时滞电路等构建了电路实验平台ꎬ有
效验证了已有结果.研究表明ꎬ时滞可诱导系统在

稳定平衡态、同步周期振荡以及异步周期振荡之间

发生切换.此外ꎬ时滞可诱导复杂放电模式的产生

和相互间的转迁.例如ꎬ随着时滞的增大ꎬ神经元簇

放电行为中峰的个数也不断增加ꎬ会经历由周期 ３
至周期 ７ 的转迁过程.
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