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摘要　 神经元膜电位的放电活动是神经编码的基础.然而ꎬ目前对于神经元电活动对神经信息的编码方式ꎬ

至今尚未形成一个完整的认识.传统的编码理论认为神经系统以离散的动作电位放电序列进行信息的表达

和传递ꎬ主要研究动作电位的发放频率和放电活动的时间模式.基于该理论ꎬ对神经元放电序列所携带的信

息已经出现了一些定量的计算方法ꎬ但这些方法还很难应用到大规模神经元网络的计算当中.本研究以神经

元的膜电位为研究对象ꎬ展示了如何量化膜电位序列所携带的信息ꎬ并将该计算结果与传统放电序列方法

的计算结果进行了对比分析ꎬ其结果取得了很好的一致性.本研究为神经活动信息量的定量计算提供了一种

新的思路和方法.
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引言

神经信息的编码和解码问题一直是认知神经科

学和信息领域内的核心问题之一[１－３]ꎬ长期以来吸引

着神经科学家和类脑智能科学家们的广泛关注[４－６] .
其中ꎬ如何用定量的方式对神经元电活动所携带的

和传递的信息进行描述和计算ꎬ至今尚未形成一个

完整的认识.然而在这个领域内却不乏探索者.
神经元的电活动以一定方式揭示了刺激信号

的一些特性ꎬ即编码了关于刺激的“有关信息” [７] .
“信息论”方法为描述和定量计算这种信息提供了

一种有效的工具[８ꎬ９] .信息的基本特性在于事物的

不确定性ꎬ任何确定的事物都不含有信息.信息所

包含的内容就是降低事物的未知性或不确定

性[１０－１２] .信息可以被携带、贮存及处理ꎬ同时信息是

可以度量的ꎬ区别在于信息内容量大、小的差别.
对于单个神经元ꎬ其发放的动作电位的波形和

幅度在短时间内基本一致ꎬ因此ꎬ传统的编码理论

认为神经系统以离散的动作电位放电序列进行信

息的表达和传递[１３ꎬ１４] .传统的神经电生理工作ꎬ是
通过特定刺激作用下神经元动作电位发放频率的

改变ꎬ对神经元的反应特性进行分析[１５ꎬ１６] .神经元

对信息的编码特性ꎬ不仅仅反映在其放电频率上ꎬ

放电活动精确的时间模式以及相关神经元的群体

活动的时间和空间特性ꎬ都在很大程度上对神经信

息编码有贡献[１７] .结合“信息论”的方法ꎬ已有许多

研究通过分析神经反应的时间模式的概率分布来

量化神经元在响应特定刺激时所传递的信息

量[１８－２１] .这种方法也被用来分析视网膜神经节细胞

对视觉刺激反应的信息传递速率[２２－２４] .但这种方法

基于其数据分析的特点ꎬ目前仅仅应用在单个神经

元的信息计算研究中ꎬ难以应用到大规模神经元网

络的信息计算当中.
针对这个问题ꎬ本研究从神经元的膜电位出

发ꎬ给出膜电位序列携带信息的定量计算方法.通
过实验数据的模拟ꎬ使用该方法分别计算在恒定刺

激和动态刺激下膜电位序列携带的信息量ꎬ并将计

算结果与使用传统放电序列方法的计算结果进行

对比———结果取得了很好的一致性.这项研究的重

要意义在于能够为今后脑功能全局神经网络的定

量计算提供新的方法ꎬ为探索信息量和认知行为的

编码之间建立一个桥梁.

１　 计算模型与方法

１.１　 神经元的生物物理模型

为了近似地计算出神经元网络的能量消耗ꎬ
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Ｗａｎｇ￣Ｚｈａｎｇ 等人[２５－２７]对单个神经元提出了一个新

颖的生物物理模型ꎬ其结构如图 １ 所示.

图 １　 Ｗａｎｇ￣Ｚｈａｎｇ 神经元生物物理模型

Ｆｉｇ.１　 Ｗａｎｇ￣Ｚｈａｎｇ ｂｉｏｐｈｙｓｉｃａｌ ｍｏｄｅｌ ｏｆ ａ ｎｅｕｒｏｎ

　 　 图 １ 中ꎬＣｍ 表示膜电容ꎬＩｍ 为外部神经元输入

的总电流ꎬＵ 为电压源. ｒｍ 表示跨越 Ｉｍ 的电阻ꎬｒ０ｍ
表示跨越 Ｕ 的电阻ꎬ是由于电流源和电压源不理

想所造成的损耗.图 １ 中将膜电阻分为了三部分

ｒ１ｍ、ｒ２ｍ和 ｒ３ｍꎬ是由于电流源和电压源的作用位点

不在同一位置上.该单个神经元的生物物理模型与

传统的单个神经元模型相比ꎬ增加了一个电压源、
一个电流源和一个电感.电压源是神经元内外各种

离子的浓度差所形成的ꎬ它将驱使离子的移动.电
流源的形成一方面是由于离子的化学梯度的存在ꎬ
另一方面是神经元会接受周围神经元的刺激.此
外ꎬ钠离子、钾离子、钙离子等各种带电离子在离子

通道中流进流出ꎬ会形成一个回路电流ꎬ引起自感

应效果ꎬ等效于一个电感元件 Ｌｍ .网络中第 ｍ 个神

经元和周围神经元的耦合关系ꎬ由所有与之相连的

神经元输入电流的总和 Ｉｍ表达如下:

Ｉｍ ＝ ｉ１ｍ＋∑
ｎ

ｊ ＝ １
[ｉ０ｍ( ｊ－１)ｓｉｎ(ωｍ( ｊ－１)(ｔ ｊ－ｔ ｊ－１))]＋

ｉ０ｍ(ｎ)ｓｉｎ(ωｍ(ｎ)( ｔ－ｔｎ)) (１)
其中ꎬｉｍ１表示维持静息膜电位所需要的电流ꎬｉ０ｍ表
示在阈下活动时神经元受周围神经元电流刺激而

产生的总效应ꎬωｍ 表示动作电位发放的频率.
图 １ 的电路方程由下式给出:
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通过解上述方程组ꎬ可得到膜电位 Ｕ０ｍ的解析

解如下:
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其中ꎬ第 ｍ 个神经元的消耗功率为:
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其中ꎬｄ１ｍꎬｄ２ｍꎬｄ３ｍꎬｄ４ｍꎬｄ５ｍꎬｄ６ｍ可由文献[２５]得到.

图 ２　 动作电位和对应的能量函数

Ｆｉｇ.２　 Ａｃｔｉｏｎ ｐｏｔｅｎｔｉａｌ ａｎｄ ｔｈｅ ｃｏｒｒｅｓｐｏｎｄｉｎｇ ｅｎｅｒｇｙ ｆｕｎｃｔｉｏｎ

　 　 第(４)式是用能量方法得到的动作电位ꎬ其数

值解如图 ２ 的上图所示.将(４)式的解析解代入第

ｍ 个神经元的功率表达式(５)式中ꎬ可得到如图 ２
的下图所示的功率 Ｐｍ .
１.２　 结构性神经网络模型

本文假设的皮层神经网络结构如图 ３ 所示.其
中每个神经元的动力学特性都来自于上述的

Ｗａｎｇ￣Ｚｈａｎｇ 模型ꎬ因此该网络结构被严格地定义

在神经生物学的基础之上.大脑皮层神经元连接的

解剖学结构表明ꎬ任意脑区内部的神经网络如果不

考虑功能性连接ꎬ那么网络的内部就是一个全连接

的结构性神经网络ꎬ如皮层功能柱[２８ꎬ２９] .如果把皮

层功能柱看作是一个封闭系统ꎬ为简单起见ꎬ截取

该封闭系统内部的一个局部区域ꎬ那么该区域的网

络结构可以由如图 ３ 所示的结构性神经网络来表

达.图 ３ 为 １５ 个兴奋性神经元构成的一个全连接

结构的神经网络ꎬ图中各个神经元之间的连接线表

５２
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示它们是相互耦合的ꎬ但任意两个神经元之间的耦

合强度都互不相同ꎬ而且神经元两两之间的耦合强

度也是互不对称的.根据突触可塑性原理[３０ꎬ３１]ꎬ来
自实验的统计数据表明神经元之间突触耦合强度

的取值范围服从均匀分布[３２] .

图 ３　 神经网络的连接结构

Ｆｉｇ.３　 Ｃｏｎｎｅｃｔｉｏｎ ｓｔｒｕｃｔｕｒｅ ｏｆ ｔｈｅ ｎｅｕｒａｌ ｎｅｔｗｏｒｋ

　 　 记耦合强度为如下矩阵:
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其中ꎬｗ ｉꎬｊ代表第 ｉ 个神经元和第 ｊ 个神经元间的耦

合强度.
网络的运行方式如下:
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(３)将 Ｉｉ( ｔ)带入方程式(５)解得膜电位 Ｕｉ( ｔ) .
其中ꎬＳｉ( ｔ)代表 ｔ 时刻ꎬ第 ｉ 个神经元收到的刺激

总和ꎻＱ( ｔ－τｉｊꎬｊ)代表 ｔ－τｉｊ时刻第 ｊ 个神经元的动作

电流发放状态ꎬ静息时为 ０ꎬ动作时为 １ꎬ因此刺激

信息被简化为 ０ 或 １ 的脉冲发放ꎻτｉｊ代表第 ｊ 个神

经元产生一个动作电位后ꎬ到与这个神经元耦合的

第 ｉ 个神经元接受到刺激的时间间隔[３３] .在模型

中ꎬτ 的取值服从均匀分布[３４]ꎻＮｏ( ｔ)表示 ｔ 时刻的

噪声ꎬ在模型中ꎬＮｏ 的取值服从高斯分布.
１.３　 膜电位信息熵的计算方法

我们往往用概率对离散随机事件的特性进行

描述ꎬ随机事件 ｘ 的概率记为 ｐ(ｘ) .一个发生概率

接近 １ 的随机事件ꎬ发生的可能性很大ꎬ所以它包

含的不确定度就很小.与此相反ꎬ一个发生概率较

小的随机事件ꎬ很难猜测在某个时刻它能否发生ꎬ
所以它包含的不确定度就相对较大.从信息论的角

度出发ꎬ事件概率依赖的信息量 Ｉ(ｘｉ)＝ －ｌｏｇｐ(ｘｉ)ꎬ
反映了信息源总体集合中各相应成分的不确定度.
在信息量的计算中ꎬ对数以 ２ 为底ꎬ以比特(ｂｉｔ)为

单位ꎬ信息熵 Ｓ(Ｘ) ＝ －∑
ｉ
ｐ(ｘｉ)ｌｏｇｐ(ｘｉ)ꎬ反映了信号

的总体特性.在传统神经编码的量化计算中ꎬ动作

电位序列所携带的信息量正是通过以上熵值来进

行度量[１８－２０ꎬ３５] .
神经元的膜电位是一个连续变化的量ꎬ为了表

征给定时间内膜电位序列的不确定度ꎬ我们首先将

同一神经元多次重复实验记录得到的膜电位序列

分割成 ｎ 个非重叠窗口ꎬ每个窗口的长度为 ｌ(如图

３ 所示) .在第 ｉ 个时间窗口内ꎬ使用 Ｐｅａｒｓｏｎ 相关性

作为对于相同刺激下膜电位序列重复性的度量来

获得膜电位序列的相关矩阵 Ｒｉ(对于 ｍ 次重复实

验的 ｍ×ｍ 矩阵) .然后我们将给定时间内膜电位序

列的时间可变性定义为:

ｆ＝ １－ｃｏｒｒｃｏｅｆ(Ｒ ｉꎬＲ ｊ)ꎬｉꎬｊ＝ １ꎬ２ꎬ３ꎬ􀆺ꎬｎꎬｉ≠ｊ

(８)
如图 ４ 所示. ｆ 的后半部分比较膜电位序列随时间

变化的相似程度ꎬ它是不同时间窗口中膜电位序列

的相关矩阵之间的平均相关系数ꎬ这里我们定义这

个平均相关系数为膜电位序列的时间相关系数ꎬ记

为 ｒ ＝ ｃｏｒｒｃｏｅｆ(Ｒ ｉꎬＲ ｊ)ꎬ ｉꎬ ｊ ＝ １ꎬ２ꎬ３ꎬ􀆺ꎬｎꎬ ｉ≠ ｊ.接下

来ꎬ用 １ 减去这个值表示给定时间内膜电位序列的

时间可变性ꎬ则(８)式等价于:
ｆ＝ １－ｒ (９)

事实上ꎬ这种方法已被用于不同背景下脑信号的研

究分析之中[３６ꎬ３７] .

６２
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图 ４　 膜电位序列的时间可变性

Ｆｉｇ.４　 Ｔｅｍｐｏｒａｌ ｖａｒｉａｂｉｌｉｔｙ ｏｆ ｔｈｅ ｍｅｍｂｒａｎｅ ｐｏｔｅｎｔｉａｌ ｔｒａｉｎｓ

　 　 从信息论的角度出发ꎬ膜电位序列的时间相关

系数 ｒ 越大ꎬ同一膜电位序列携带相同的信息量就

越多ꎬ总的信息量就越小ꎬ因此这里用 Ｉ ＝ －ｌｏｇ２( ｒ)
表示膜电位序列之间的不确定度.结合膜电位序列

的时间可变性ꎬ在信息量的计算中ꎬ我们定义每段

膜电位序列的平均信息熵的表达式如下:
Ｓ＝ －ｆ ｌｏｇ２( ｒ) (１０)

２　 不同刺激下对应膜电位序列的信息熵

２.１　 恒定刺激

对 １５ 个神经元从 １ 到 １５ 进行编号ꎬ取网络中

各个神经元之间的耦合强度在[０.１ꎬ０.３]上均匀分

布ꎬ信号传递时滞在[０.５ｍｓꎬ１.０ｍｓ]上均匀分布.对
第 １ 号到第 ５ 号神经元施加恒定的强刺激ꎬ记录网

络中任意一个神经元的膜电位和动作电位发放(本
文选择编号为 ８ 的神经元).重复 １００ 次相同的试

验ꎬ得到 ８ 号神经元的脉冲发放序列和膜电位序列

如图 ５ 所示.
图 ５ 的上图记录的是 １００ 次重复试验的脉冲

发放序列ꎬ从图中可以看出:在相同的恒定刺激下ꎬ
神经元的动作电位发放呈现出不规则的时间模式.
为了进一步分析ꎬ我们对所记录得到的脉冲发放序

列做了以下统计分析(如图 ６ 和图 ７ 所示).

图 ５　 恒定刺激下 ８ 号神经元 １００ 次重复试验

的脉冲发放序列和膜电位序列

Ｆｉｇ.５　 Ｓｐｉｋｅ ｔｒａｉｎｓ ａｎｄ ｍｅｍｂｒａｎｅ ｐｏｔｅｎｔｉａｌ ｔｒａｉｎｓ ｏｆ ｔｈｅ Ｎｏ.８ ｎｅｕｒｏｎ

ｕｎｄｅｒ ｃｏｎｓｔａｎｔ ｓｔｉｍｕｌａｔｉｏｎｓ ａｆｔｅｒ １００ ｔｉｍｅｓ ｏｆ ｒｅｐｅａｔｅｄ ｅｘｐｅｒｉｍｅｎｔｓ

图 ６　 动作电位发放频率统计

Ｆｉｇ.６　 Ｓｔａｔｉｓｔｉｃｓ ｏｆ ｆｉｒｉｎｇ ｆｒｅｑｕｅｎｃｙ ｏｆ ａｃｔｉｏｎ ｐｏｔｅｎｔｉａｌ

图 ７　 动作电位发放次数的均值和方差统计

Ｆｉｇ.７　 Ｓｔａｔｉｓｔｉｃｓ ｏｆ ｍｅａｎ ａｎｄ ｖａｒｉａｎｃｅ ｏｆ ｔｈｅ

ｆｉｒｉｎｇ ｆｒｅｑｕｅｎｃｙ ｏｆ ａｃｔｉｏｎ ｐｏｔｅｎｔｉａｌ

　 　 图 ６ 中统计的是这 １００ 次脉冲发放序列的放

电频率ꎬ结果显示:在相同的恒定刺激下ꎬ神经元的

放电频率相对稳定ꎬ在 ５０ 次 /秒附近波动.图 ７ 统

计的是放电次数的均值和方差的关系ꎬ从图中可以

发现ꎬ神经元放电频率的变异度和均值之间几乎呈

线性增长关系ꎬ这一结果和泊松过程的特征相吻合.
以上统计分析结果表明ꎬ本文恒定刺激下的模

拟数据与基于苍蝇视觉系统中的运动敏感神经元

Ｈ１ 收集到的大量数据相一致[７] .
根据上述膜电位序列携带信息熵的计算方法ꎬ

基于 １００ 次重复试验的膜电位序列的模拟数据(图

７２
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５ 下图)ꎬ在给定时间窗口 Ｔ＝ １０００ｍｓ 和分割长度 Ｌ
＝４０ｍｓ 的条件下ꎬ我们将 １００ 次重复实验得到的膜

电位序列分成 ｎ＝ ２５ 个非重复的小窗口ꎬ并计算每

个小窗口中的膜电位序列的相关系数矩阵ꎬ计算结

果如图 ８ 所示(图中仅展示第 ｎ ＝ １ꎬ４ꎬ７ꎬ􀆺ꎬ２５ 个

窗口的计算结果).

图 ８　 膜电位序列的相关系数矩阵

Ｆｉｇ.８　 Ｃｏｒｒｅｌａｔｉｏｎ ｃｏｅｆｆｉｃｉｅｎｔ ｍａｔｒｉｃｅｓ ｏｆ ｍｅｍｂｒａｎｅ ｐｏｔｅｎｔｉａｌ ｔｒａｉｎｓ

　 　 根据图 ８ 的计算结果我们得到:恒定刺激下ꎬ
１００ 次重复实验得到的膜电位序列之间的时间相

关系数 ｒ＝ ０.１０７１ꎬ时间可变系数 ｆ ＝ ０.８９２９ꎬ每小段

膜电位序列携带的平均信息熵 Ｓ＝ ２.８８ｂｉｔｓ.
２.２　 动态刺激

改变刺激形式ꎬ对第 １ 号到第 ５ 号神经元施加

特定频率的正弦刺激ꎬ记录编号为 ８ 的神经元的膜

电位和动作电位发放.重复 １００ 次相同的试验ꎬ得
到 ８ 号神经元的脉冲发放序列和膜电位序列如图

９ 所示.
图 ９ 的上图记录的是 １００ 次重复试验的脉冲

发放序列ꎬ从图中可以看出:在相同的动态刺激下ꎬ
神经元的动作电位发放呈现出一定规则的时间模

式.为了进一步分析ꎬ我们对所记录得到的脉冲发

放序列做了以下统计分析(如图 １０ 和图 １１ 所示).

图 ９　 动态刺激下ꎬ８ 号神经元 １００ 次

重复试验的脉冲发放序列和膜电位序列

Ｆｉｇ.９　 Ｓｐｉｋｅ ｔｒａｉｎｓ ａｎｄ ｍｅｍｂｒａｎｅ ｐｏｔｅｎｔｉａｌ ｔｒａｉｎｓ ｏｆ ｔｈｅ Ｎｏ.８ ｎｅｕｒｏｎ

ｕｎｄｅｒ ｄｙｎａｍｉｃ ｓｔｉｍｕｌａｔｉｏｎｓ ａｆｔｅｒ １００ ｔｉｍｅｓ ｏｆ ｒｅｐｅａｔｅｄ ｅｘｐｅｒｉｍｅｎｔｓ

图 １０　 动作电位发放频率统计

Ｆｉｇ.１０　 Ｓｔａｔｉｓｔｉｃｓ ｏｆ ｆｉｒｉｎｇ ｆｒｅｑｕｅｎｃｙ ｏｆ ａｃｔｉｏｎ ｐｏｔｅｎｔｉａｌ

　 　 图 １０ 中统计的是这 １００ 次脉冲发放序列的放

电频率ꎬ结果显示:在相同的动态刺激下ꎬ神经元的

放电频率在一个较大的范围内变化ꎬ而且呈现出明

８２
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图 １１　 动作电位发放次数的均值和方差统计

Ｆｉｇ.１１　 Ｓｔａｔｉｓｔｉｃｓ ｏｆ ｍｅａｎ ａｎｄ ｖａｒｉａｎｃｅ ｏｆ ｔｈｅ

ｆｉｒｉｎｇ ｆｒｅｑｕｅｎｃｙ ｏｆ ａｃｔｉｏｎ ｐｏｔｅｎｔｉａｌ

显的时间依赖性.图 １１ 统计的是放电次数的均值

和方差的关系ꎬ从图中可以发现ꎬ神经元放电频率

的变异度和均值之间有很大差异ꎬ与泊松过程不吻

合.
以上统计分析结果表明ꎬ本文动态刺激下的模

拟数据与基于苍蝇视觉系统中的运动敏感神经元

Ｈ１ 收集到的大量数据相一致[７] .
根据上述膜电位序列携带信息熵的计算方法ꎬ

基于 １００ 次重复试验的膜电位序列的模拟数据(图
９ 下图)ꎬ在给定时间窗口 Ｔ＝ １０００ｍｓ 和分割长度 Ｌ
＝ ４０ｍｓ 的条件下ꎬ我们将 １００ 次重复实验得到的

膜电位序列分成 ｎ＝ ２５ 个非重复的小窗口ꎬ并计算

每个小窗口中的膜电位序列的相关系数矩阵ꎬ计算

结果如图 １２ 所示(图中仅展示第 ｎ ＝ １ꎬ４ꎬ７ꎬ􀆺ꎬ２５
个窗口的计算结果).

图 １２　 膜电位序列的相关系数矩阵

Ｆｉｇ.１２　 Ｃｏｒｒｅｌａｔｉｏｎ ｃｏｅｆｆｉｃｉｅｎｔ ｍａｔｒｉｃｅｓ ｏｆ ｍｅｍｂｒａｎｅ ｐｏｔｅｎｔｉａｌ ｔｒａｉｎｓ

　 　 根据图 １２ 的计算结果我们得到:动态刺激下ꎬ
１００ 次重复实验得到的膜电位序列之间的时间相

关系数 ｒ＝ ０.０６４９ꎬ时间可变系数 ｆ ＝ ０.９３５１ꎬ每小段

膜电位序列携带的平均信息熵 Ｓ＝ ３.６９ｂｉｔｓ.
２.３　 结果分析

从以上的计算可知ꎬ与恒定刺激相比ꎬ动态刺

激下每小段膜电位序列携带的平均信息熵更多.另
一方面ꎬ为了比较两种刺激产生的膜电位序列的可

重复性ꎬ我们直接计算整个时间窗口 Ｔ 内 １００ 次重

复实验得到的膜电位序列之间的平均相关系数 Ｒꎬ

得到:恒定刺激下ꎬ膜电位序列的相关系数为 Ｒ ＝
０.０３７７ꎻ动态刺激下ꎬ膜电位序列的相关系数为 Ｒ ＝
０.０６６５.显然ꎬ动态刺激产生的膜电位序列之间具

有更大的相关系数ꎬ即具有更高的相似性ꎬ而这种

相似性往往体现为在相同刺激下神经元放电活动

的可重复性ꎬ所以该计算结果说明动态刺激产生的

膜电位序列具有较高的可重复性.
上述计算结果与使用动作电位序列计算信息

量方法的计算结果一致[７]:与恒定刺激相比ꎬ在动

态刺激下ꎬ神经元信息编码的效率更高ꎬ可以编码

９２
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更多的信息ꎬ同时ꎬ相应神经元的放电活动具有更

高的可重复性.

３　 探究不同参数对计算结果的影响

我们使用控制变量法ꎬ分别改变分割长度和重

复试验的次数ꎬ以探究分割长度和数据量大小对信

息量计算结果的影响.
３.１　 分割长度 Ｌ 对计算结果的影响

基于同样的模拟数据(图 ５ 和图 ９)ꎬ我们在给

定的时间窗口 Ｔ＝ １０００ｍｓ 内ꎬ选取不同的分割长度

Ｌꎬ分别计算两种刺激条件下ꎬ膜电位序列所携带的

信息量ꎬ恒定刺激的计算结果如图 １３ 所示ꎬ动态刺

激的计算结果如图 １４ 所示.

图 １３　 恒定刺激下ꎬ分割长度 Ｌ 对所计算得到的信息量的影响

Ｆｉｇ.１３　 Ｅｆｆｅｃｔ ｏｆ ｄｉｖｉｓｉｏｎ ｌｅｎｇｔｈ Ｌ ｏｎ ｔｈｅ ｃａｌｃｕｌａｔｅｄ ｔｈｅ

ａｍｏｕｎｔ ｏｆ ｉｎｆｏｒｍａｔｉｏｎ ｕｎｄｅｒ ｃｏｎｓｔａｎｔ ｓｔｉｍｕｌａｔｉｏｎ

图 １４　 动态刺激下ꎬ分割长度 Ｌ 对所计算得到的信息量的影响

Ｆｉｇ.１４　 Ｅｆｆｅｃｔ ｏｆ ｄｉｖｉｓｉｏｎ ｌｅｎｇｔｈ Ｌ ｏｎ ｔｈｅ ｃａｌｃｕｌａｔｅｄ ｔｈｅ

ａｍｏｕｎｔ ｏｆ ｉｎｆｏｒｍａｔｉｏｎ ｕｎｄｅｒ ｄｙｎａｍｉｃ ｓｔｉｍｕｌａｔｉｏｎ

　 　 从图 １３ 和图 １４ 的计算结果可知:无论哪种刺

激ꎬ随着 Ｌ 的取值不同ꎬ最终计算得到的膜电位序

列的时间相关系数和单位时间(ｓ)携带的信息量的

变化趋势相同.从图中可以看到ꎬ单位时间(ｓ)携带

的信息量和 １ / Ｌ 之间则呈现出良好的线性关系ꎻ而
当 Ｌ 在 ５—５０ 之间变化(１ / Ｌ 在 ０.０２—０.２ 之间变

化)时ꎬ时间相关系数 ｒ 和 １ / Ｌ 之间也呈现出较好

的线性关系.由此可知ꎬ在膜电位序列的信息估计

中ꎬ时间分割长度 Ｌ 是至关重要的参数.但根据传

统的神经编码理论可知ꎬ动作电位是神经系统信息

传递的基本“语言”ꎬ由它构成了信息传递的基本

过程ꎻ另一方面ꎬ在神经元的生理活动中ꎬ动作电位

的发放频率很低ꎬ因此 Ｌ 的取值不能太小ꎬ否则没

有生理学意义.
３.２　 重复试验次数对计算结果的影响

在恒定刺激的试验中ꎬ不断改变重复试验的次

数ꎬ范围为 １０－１０００ꎬ步长为 １０.在给定时间窗口 Ｔ
＝ １０００ｍｓ 和分割长度 Ｌ＝ ４０ｍｓ 的条件下ꎬ分别计算

相应重复试验次数下膜电位序列所携带的信息量ꎬ
计算结果如图 １５ 所示.

图 １５　 重复试验次数对所计算得到的信息量的影响

Ｆｉｇ.１５　 Ｅｆｆｅｃｔ ｏｆ ｔｈｅ ｒｅｐｅａｔｅｄ ｔｉｍｅｓ ｏｎ ｔｈｅ

ａｍｏｕｎｔ ｏｆ ｉｎｆｏｒｍａｔｉｏｎ ｃａｌｃｕｌａｔｅｄ

　 　 从图 １５ 观察可知ꎬ重复试验的次数与膜电位

序列的时间相关系数和信息量都呈现出一种单调

关系ꎬ重复试验的次数越大ꎬ膜电位序列的时间相

关系数和信息量越大.另一方面ꎬ当重复试验的次

数在 １００ 以内变化时ꎬ膜电位序列的时间相关系数

和信息量有明显的变化ꎻ但在 １００ 之后ꎬ膜电位序

列的时间相关系数和信息量的变化不再明显ꎬ并逐

渐趋于平稳.这意味着膜电位序列信息熵的计算方

法对于数据量的大小(重复试验的次数)有很强的

收敛性ꎬ即只需要进行较少次数的重复试验就可以

达到比较好的计算结果.这种方法为实际实验和数

据采集极大地减少了工作量.

０３



第 １ 期 彭俊等:神经元膜电位对信息的编码

４　 总结

神经元的电活动以一定方式揭示了刺激信号

的一些特性ꎬ即编码了关于刺激的“有关信息”.神
经元对信息的编码特性ꎬ不仅反映在其放电频率

上ꎬ放电活动精确的时间模式以及相关神经元的群

体活动的时间和空间特性ꎬ都在很大程度上对神经

信息编码有贡献.
本文基于 Ｗａｎｇ￣Ｚｈａｎｇ 模型ꎬ用膜电位序列计

算信息熵的方法研究了结构性网络在两种不同刺

激(恒定刺激和动态刺激)下的信息传递ꎬ并通过

计算机模拟得到与实验数据相吻合的模拟结果.计
算结果表明:(１)与恒定刺激相比ꎬ动态刺激下每

小段膜电位序列携带的平均信息熵更多ꎻ(２)与恒

定刺激相比ꎬ动态刺激产生的膜电位序列之间具有

更大的相关系数ꎬ说明动态刺激产生的膜电位序列

具有较高的可重复性.上述计算结果与使用动作电

位序列计算信息量的方法所得到的结果一致.
此外ꎬ对于用膜电位序列计算信息熵的方法ꎬ

本文还探究了不同参数对计算结果的影响ꎬ其中包

括:时间分割长度 Ｌ 和重复试验次数(数据量大

小).计算结果表明:(１)当 Ｌ 在 ５－５０ 之间变化(１ /
Ｌ 在 ０.０２－０.２ 之间变化)时ꎬ时间相关系数 ｒ 和信

息熵 Ｓ 之间呈现出较好的线性关系ꎻ(２)重复试验

的次数与膜电位序列的时间相关系数 ｒ 和信息熵 Ｓ
都呈现出一种单调关系ꎬ重复试验的次数越大ꎬ膜
电位序列的时间相关系数 ｒ 和信息量 Ｓ 越大ꎻ同时

这种单调关系具有很好的收敛性.
由于大脑的认知神经结构是复杂且多层次的ꎬ

因此ꎬ要揭示大脑皮层的神经编码ꎬ需要从各个不

同尺度以及不同层次的结合上来展开研究.而用膜

电位序列计算信息熵的方法ꎬ能够为今后脑功能全

局神经网络的定量计算提供新的方法ꎬ结合适当的

脑成像技术ꎬ应用本文提出的神经元膜电位携带信

息量的计算方法ꎬ可以很好地扩展到局部脑或全局

脑电活动的信息计算ꎬ在网络动态活动的信息量和

认知行为的编码之间建立一个桥梁.
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ｃｈｒｏｎｉｚａｔｉｏｎ ｉｎ ａ ｍｏｄｕｌａｒ ｎｅｕｒｏｎａｌ ｎｅｔｗｏｒｋ ｗｉｔｈ ｓｙｎａｐｔｉｃ
ｐｌａｓｔｉｃｉｔｙ. Ｃｏｇｎｉｔｉｖｅ Ｎｅｕｒｏｄｙｎａｍｉｃｓꎬ ２０１８ꎬ１２(６):６２５ ~
６３６

３２　 Ｒｕｂｉｎｏｖ Ｍꎬ Ｓｐｏｒｎｓ Ｏꎬ Ｔｈｉｖｉｅｒｇｅ Ｊ Ｐꎬ ｅｔ ａｌ. Ｎｅｕｒｏｂｉｏｌｏｇｉ￣
ｃａｌｌｙ ｒｅａｌｉｓｔｉｃ ｄｅｔｅｒｍｉｎａｎｔｓ ｏｆ ｓｅｌｆ￣ｏｒｇａｎｉｚｅｄ ｃｒｉｔｉｃａｌｉｔｙ ｉｎ
ｎｅｔｗｏｒｋｓ ｏｆ ｓｐｉｋｉｎｇ ｎｅｕｒｏｎｓ. Ｐｌｏｓ Ｃｏｍｐｕｔａｔｉｏｎａｌ Ｂｉｏｌｏｇｙꎬ
２０１１

３３　 Ｒｉｇａｔｏｓ Ｇꎬ Ｗｉｒａ Ｐꎬ Ｍｅｌｋｉｋｈ Ａ. Ｎｏｎｌｉｎｅａｒ ｏｐｔｉｍａｌ ｃｏｎｔｒｏｌ
ｆｏｒ ｔｈｅ ｓｙｎｃｈｒｏｎｉｚａｔｉｏｎ ｏｆ ｂｉｏｌｏｇｉｃａｌ ｎｅｕｒｏｎｓ ｕｎｄｅｒ ｔｉｍｅ￣
ｄｅｌａｙｓ. Ｃｏｇｎｉｔｉｖｅ Ｎｅｕｒｏｄｙｎａｍｉｃｓꎬ ２０１９ꎬ１３(１):８９~１０３

３４　 Ｖａｎ Ｑ Ｍ Ｌꎬ Ｍａｒｔｉｎｅｒｉｅ Ｊꎬ Ｎａｖａｒｒｏ Ｖꎬ ｅｔ ａｌ. Ｃｈａｒａｃｔｅｒｉ￣
ｚｉｎｇ ｎｅｕｒｏｄｙｎａｍｉｃ ｃｈａｎｇｅｓ ｂｅｆｏｒｅ ｓｅｉｚｕｒｅｓ. Ｊｏｕｒｎａｌ ｏｆ
Ｃｌｉｎｉｃａｌ Ｎｅｕｒｏｐｈｙｓｉｏｌｏｇｙꎬ ２００１ꎬ１８(３):１９１~２０８

３５ 　 Ａｒｔｕｒｏ Ｔꎬ Ｐｅｔｅｒｓ Ｊ Ｆꎬ Çａｎｋａｙａ Ｍ Ｎ. Ｔｈｅ ｉｎｆｏｒｍａｔｉｏｎａｌ
ｅｎｔｒｏｐｙ ｅｎｄｏｗｅｄ ｉｎ ｃｏｒｔｉｃａｌ ｏｓｃｉｌｌａｔｉｏｎｓ. Ｃｏｇｎｉｔｉｖｅ Ｎｅｕｒｏ￣
ｄｙｎａｍｉｃｓ. ２０１８ꎬ１２(５):５０１~５０７

３６　 Ｚｈａｎｇ Ｊꎬ Ｃｈｅｎｇ Ｗꎬ Ｌｉｕ Ｚꎬ ｅｔ ａｌ. Ｎｅｕｒａｌꎬｅｌｅｃｔｒｏｐｈｙｓｉｏｌｏｇ￣
ｉｃａｌ ａｎｄ ａｎａｔｏｍｉｃａｌ ｂａｓｉｓ ｏｆ ｂｒａｉｎ￣ｎｅｔｗｏｒｋ ｖａｒｉａｂｉｌｉｔｙ ａｎｄ
ｉｔｓ ｃｈａｒａｃｔｅｒｉｓｔｉｃ ｃｈａｎｇｅｓ ｉｎ ｍｅｎｔａｌ ｄｉｓｏｒｄｅｒｓ. Ｂｒａｉｎꎬ
２０１６ꎬ１３９:２３０７~２３２１

３７　 Ｍｕｅｌｌｅｒ Ｓꎬ Ｗａｎｇ Ｄꎬ Ｆｏｘ Ｍ Ｄꎬ ｅｔ ａｌ. Ｉｎｄｉｖｉｄｕａｌ ｖａｒｉａｂｉｌｉ￣
ｔｙ ｉｎ ｆｕｎｃｔｉｏｎａｌ ｃｏｎｎｅｃｔｉｖｉｔｙ ａｒｃｈｉｔｅｃｔｕｒｅ ｏｆ ｔｈｅ ｈｕｍａｎ
ｂｒａｉｎ. Ｎｅｕｒｏｎꎬ ２０１３ꎬ７７(３):５８６~５９５

Ｒｅｃｅｉｖｅｄ ９ Ｓｅｐｔｅｍｂｅｒ ２０１９ꎬｒｅｖｉｓｅｄ １２ Ｄｅｃｅｍｂｅｒ ２０１９.
† Ｃｏｒｒｅｓｐｏｎｄｉｎｇ ａｕｔｈｏｒ Ｅ￣ｍａｉｌ:ｒｂｗａｎｇ＠ １６３.ｃｏｍ

ＩＮＦＯＲＭＡＴＩＯＮ ＣＯＤＩＮＧ ＯＦ ＮＥＵＲＯＮＡＬ ＭＥＭＢＲＡＮＥ ＰＯＴＥＮＴＩＡＬ

Ｐｅｎｇ Ｊｕｎ　 Ｗａｎｇ Ｒｕｂｉｎ†

( Ｉｎｓｔｉｔｕｔｅ ｏｆ Ｃｏｇｎｉｔｉｖｅ Ｎｅｕｒｏｄｙｎａｍｉｃｓꎬ Ｅａｓｔ Ｃｈｉｎａ Ｕｎｉｖｅｒｓｉｔｙ ｏｆ Ｓｃｉｅｎｃｅ ａｎｄ Ｔｅｃｈｎｏｌｏｇｙꎬ Ｓｈａｎｇｈａｉ ２００２３７ꎬ Ｃｈｉｎａ)

Ａｂｓｔｒａｃｔ　 Ｔｈｅ ｆｉｒｉｎｇ ａｃｔｉｖｉｔｙ ｏｆ ｎｅｕｒｏｎａｌ ｍｅｍｂｒａｎｅ ｐｏｔｅｎｔｉａｌ ｉｓ ｔｈｅ ｂａｓｉｓ ｏｆ ｎｅｕｒａｌ ｃｏｄｉｎｇ. Ｈｏｗｅｖｅｒꎬ ｔｏ ｄａｔｅꎬ ａ
ｃｏｍｐｌｅｔｅ ｕｎｄｅｒｓｔａｎｄｉｎｇ ｏｆ ｔｈｅ ｗａｙ ｂｙ ｗｈｉｃｈ ｎｅｕｒｏｎａｌ ｅｌｅｃｔｒｉｃａｌ ａｃｔｉｖｉｔｙ ｃｏｄｅｓ ｎｅｕｒａｌ ｉｎｆｏｒｍａｔｉｏｎ ｈａｓ ｎｏｔ ｙｅｔ ｂｅｅｎ
ｅｓｔａｂｌｉｓｈｅｄ. Ｔｈｅ ｔｒａｄｉｔｉｏｎａｌ ｃｏｄｉｎｇ ｔｈｅｏｒｙ ｈｏｌｄｓ ｔｈａｔ ｔｈｅ ｎｅｒｖｏｕｓ ｓｙｓｔｅｍ ｅｘｐｒｅｓｓｅｓ ａｎｄ ｔｒａｎｓｆｅｒｓ ｉｎｆｏｒｍａｔｉｏｎ ｉｎ ｄｉｓ￣
ｃｒｅｔｅ ｆｉｒｉｎｇ ｓｅｑｕｅｎｃｅｓ ｏｆ ａｃｔｉｏｎ ｐｏｔｅｎｔｉａｌꎬ ｍａｉｎｌｙ ｓｔｕｄｙｉｎｇ ｔｈｅ ｆｉｒｉｎｇ ｆｒｅｑｕｅｎｃｙ ｏｆ ａｃｔｉｏｎ ｐｏｔｅｎｔｉａｌ ａｎｄ ｔｈｅ ｔｉｍｅ ｐａｔ￣
ｔｅｒｎ ｏｆ ｆｉｒｉｎｇ ａｃｔｉｖｉｔｙ. Ｂａｓｅｄ ｏｎ ｔｈｉｓ ｔｈｅｏｒｙꎬ ｓｏｍｅ ｑｕａｎｔｉｔａｔｉｖｅ ｃａｌｃｕｌａｔｉｏｎ ｍｅｔｈｏｄｓ ｈａｖｅ ｂｅｅｎ ｐｒｅｓｅｎｔｅｄ ｆｏｒ ｔｈｅ ｉｎ￣
ｆｏｒｍａｔｉｏｎ ｃａｒｒｉｅｄ ｂｙ ｔｈｅ ｎｅｕｒｏｎａｌ ｓｐｉｋｅ ｔｒａｉｎｓꎬ ｂｕｔ ｔｈｅｓｅ ｍｅｔｈｏｄｓ ａｒｅ ｓｔｉｌｌ ｄｉｆｆｉｃｕｌｔ ｔｏ ｂｅ ａｐｐｌｉｅｄ ｉｎ ｔｈｅ ｃａｌｃｕｌａｔｉｏｎ
ｏｆ ｌａｒｇｅ￣ｓｃａｌｅ ｎｅｕｒａｌ ｎｅｔｗｏｒｋｓ. Ｉｎ ｔｈｅ ｐｒｅｓｅｎｔ ｓｔｕｄｙꎬ ｔｈｅ ｍｅｍｂｒａｎｅ ｐｏｔｅｎｔｉａｌ ｏｆ ｎｅｕｒｏｎｓ ｗａｓ ｕｓｅｄ ａｓ ｔｈｅ ｓｔｕｄｙ ｏｂ￣
ｊｅｃｔ. Ａｎａｌｙｓｉｓ ｗａｓ ｐｅｒｆｏｒｍｅｄ ｒｅｇａｒｄｉｎｇ ｈｏｗ ｔｏ ｑｕａｎｔｉｆｙ ｔｈｅ ｉｎｆｏｒｍａｔｉｏｎ ｃａｒｒｉｅｄ ｂｙ ｔｈｅ ｍｅｍｂｒａｎｅ ｐｏｔｅｎｔｉａｌ ｔｒａｉｎｓꎬ
ａｎｄ ｔｈｅ ｃａｌｃｕｌａｔｉｏｎ ｒｅｓｕｌｔｓ ｗｅｒｅ ｃｏｍｐａｒｅｄ ｗｉｔｈ ｒｅｓｕｌｔｓ ｃａｌｃｕｌａｔｅｄ ｂｙ ｔｈｅ ｔｒａｄｉｔｉｏｎａｌ ｎｅｕｒｏｎａｌ ｓｐｉｋｅ ｔｒａｉｎｓ ｍｅｔｈｏｄꎬ
ａｎｄ ｇｏｏｄ ｃｏｎｓｉｓｔｅｎｃｙ ｗａｓ ｏｂｔａｉｎｅｄ. Ｔｈｉｓ ｓｔｕｄｙ ｐｒｏｖｉｄｅｄ ａ ｎｅｗ ｉｄｅａ ａｎｄ ｍｅｔｈｏｄ ｆｏｒ ｔｈｅ ｑｕａｎｔｉｔａｔｉｖｅ ｃａｌｃｕｌａｔｉｏｎ ｏｆ
ｎｅｕｒａｌ ａｃｔｉｖｉｔｙ ｉｎｆｏｒｍａｔｉｏｎ.

Ｋｅｙ ｗｏｒｄｓ　 ｉｎｆｏｒｍａｔｉｏｎ ｃｏｄｉｎｇꎬ　 ｍｅｍｂｒａｎｅ ｐｏｔｅｎｔｉａｌ ｔｒａｉｎｓꎬ　 ｉｎｆｏｒｍａｔｉｏｎ ｅｎｔｒｏｐｙꎬ　 ｎｅｕｒａｌ ｎｅｔｗｏｒｋ
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