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Fig.1 Wang-Zhang biophysical model of a neuron
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Fig2 Action potential and the corresponding energy function
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Fig.3  Connection structure of the neural network
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Fig.4 Temporal variability of the membrane potential trains
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Fig.5 Spike trains and membrane potential trains of the No.8 neuron

under constant stimulations after 100 times of repeated experiments
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Fig.6  Statistics of firing frequency of action potential
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Fig.8 Correlation coefficient matrices of membrane potential trains
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Fig.9 Spike trains and membrane potential trains of the No.8 neuron

under dynamic stimulations after 100 times of repeated experiments
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firing frequency of action potential
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INFORMATION CODING OF NEURONAL MEMBRANE POTENTIAL

Peng Jun Wang Rubin’
(Institute of Cognitive Neurodynamics, East China University of Science and Technology, Shanghai 200237, China)

Abstract The firing activity of neuronal membrane potential is the basis of neural coding. However, to date, a
complete understanding of the way by which neuronal electrical activity codes neural information has not yet been
established. The traditional coding theory holds that the nervous system expresses and transfers information in dis-
crete firing sequences of action potential, mainly studying the firing frequency of action potential and the time pat-
tern of firing activity. Based on this theory, some quantitative calculation methods have been presented for the in-
formation carried by the neuronal spike trains, but these methods are still difficult to be applied in the calculation
of large-scale neural networks. In the present study, the membrane potential of neurons was used as the study ob-
ject. Analysis was performed regarding how to quantify the information carried by the membrane potential trains,
and the calculation results were compared with results calculated by the traditional neuronal spike trains method,
and good consistency was obtained. This study provided a new idea and method for the quantitative calculation of

neural activity information.
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