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Fig.1 Brake capture of Mars explorer
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Fig.2 Mars explorer hyperbolic orbit
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Table 1 Simulation Parameter

Simulation Parameter

mg = 5000kg w=42828.4km>/s?
F=3000N 1,=312s
R ;;,, =577000km Tars = 3395.0km
L =320100s Lgmax = 35008
[rpmi" =3395km T omax = 8395km] [ ropy, =1km  rg,, =10000km ]
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Table 2 Adaptive PSO parameters

Adaptive PSO parameters
W =0.9 Wi =0.4
Cooax = 2.5 Cpin =0.5

N=200
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Table 3  Single objective optimization and

multi-objective optimization

Min/kg Max/kg Mean/kg SD

Single objective

1896.5 2592.2 2446.8 141.4

optimization
Multi-objective
L 1771.5 2378.0 1848.1 144.1
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Fig.3 Single objective optimization and multi-objective optimization
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Table 4  Orbital elements before and after capture

Orbital elements  Before capture  After capture  Perfect capture

a(km) 3438.9 53695.0 53695.0
e(km) 2.202170 0.925598 0.925598
r,(km) 4134.2 3995.0 3995.0
r,(km) — 103395.0 103395.0
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Fig.4 Trajectory of optimal capture
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MULTI-OBJECTIVE OPTIMIZATION STRATEGY
FOR BRAKE CAPTURE OF MARS EXPLORER"

Liu Bo'" Wang Yuncai® Zhang Songtao> Han Ning’
(1. National University of Defense Technology, College of Aerospace Science and Engineering, Changsha 410073, China)
Y 8Y g P g g 8.
(2. Beijing Institute of Control & Electronic Technology, Beijing 100038, China)

Abstract A multi-objective optimization strategy based dynamic weighting algorithm is proposed in this paper for
the optimal brake capture accomplished by a mars explorer to achieve the targeted parking orbit with minimal fuel
consumption. Comparing with the conventional single objective optimization strategy, a key advantage of the de-
veloped multi-objective optimization formulation is that it considers the fuel consumption as well as the targeting
accuracy simultaneously to achieve the optimization likely. The dynamical model of mars explorer is established
where the direction of finite-thrust is contrary to its velocity. Then, focusing on the improvement of particle swarm
optimization (PSO) performance, adaptive PSO technique with dynamically adjusting parameters is presented to
address the particular challenges posed by the optimization design of complex dynamic system with highly nonlin-
ear coupling. What’ s more, the dynamic weighting strategy along with the adaptive PSO is applied on the multi-
objective optimization between fuel consumption and targeting accuracy. The multi-objective optimization strategy
demonstrates a higher probability of seeking less fuel consumption than comparable conventional single objective
optimization strategy when the targeting accuracy is in conformity with the requirement. Thus it has remarkable

application value in actual projects.

Key words multi-objective optimization, dynamic weighting, adaptive control, particle swarm optimization

(PSO), brake capture, mars exploration
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