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NONLINEAR RESPONSE OF STAY CABLES WITH
FLEXURAL RIGIDITY IN CABLE-STAYED BEAMS*

Lv Jiangen'" Wang Ronghui’
(1.College of Urban and Rural Construction, Zhongkai University of Agriculture and Engineering, Guangdong 510225, China)
(2.School of Civil Engineering and Transportation, South China University of Technology, Guangdong 510641, China)

Abstract Considering the flexural rigidity, sagging and geometric nonlinearity, the nonlinear responses of stay
cables in cable-stayed beams were investigated. The nonlinear dynamical equations of the cable-stayed beam were
formulated by Hamiltonian principle. Then, these equations were discretized by the Galerkin method, and the re-
sponses of the cable in the cable-stayed beam were obtained using the Multiple Scales method. The influence of
main parameters on the fundamental frequency of the cable in plane was analyzed. The effects of flexural rigidity
on both the frequency response and amplitude response were examined. The time history responses of the cable-
stayed beam were also obtained by numerical simulations. It was shown that the cable length has a great effect on
the fundamental frequency of the cable, and for a short cable, the flexural rigidity should be taken into account.
The frequency response curve moves to the right, but the amplitude response curve moves to the left, when the
flexural rigidity is considered. The amount of movement depends on the magnitude of flexural rigidity. The vibra-
tion of the beam has a significant impact on that of the cable, while the vibration of the cable has little effect on

that of the beam.

Key words cable-stayed bridge, cable-stayed beam, flexural rigidity, nonlinear response
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