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摘要　 研究索梁结构中考虑抗弯刚度斜拉索的非线性响应.从斜拉桥中简化出索梁组合结构力学模型ꎬ考虑

抗弯刚度、几何非线性及垂度等因素ꎬ忽略索梁纵向振动ꎬ基于 Ｈａｍｉｌｔｏｎ 变分原理ꎬ获得了索梁结构耦合非

线性振动偏微分方程组.首先运用 Ｇａｌｅｒｋｉｎ 方法离散该方程组ꎬ然后利用多尺度法对该方程组进行摄动分

析.以某索梁结构为例ꎬ分析了索主要参数对抗弯刚度斜拉索面内基频的影响ꎬ探讨了抗弯刚度对斜拉索幅

频响应、激频响应的影响ꎬ数值模拟获得了索梁结构的时程曲线.结果表明ꎬ考虑抗弯刚度后ꎬ索长对斜拉索

面内基频的影响较大ꎬ对于短索ꎬ应考虑抗弯刚度ꎻ含抗弯刚度斜拉索的幅频响应曲线整体向右平移ꎬ激频

响应曲线向左移ꎬ移动的幅度取决于抗弯刚度的大小ꎻ梁振动将对索振动产生显著影响ꎬ索振动对梁的振动

影响很小.
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引言

索梁组合结构是工程中的常见结构  ꎬ广泛应

用于土木工程领域ꎬ尤其是在桥梁工程领域具有大

量应用ꎬ在斜拉桥的施工过程中及斜拉桥成桥后都

是以索梁组合结构为主要受力体系ꎬ因此ꎬ这种组

合结构对斜拉桥的施工及运营安全性具有至关重

要作用.
基于合理假设ꎬ国内外学者深入研究了索梁组

合结构动力学问题.国内研究方面ꎬ１９９８ 年ꎬ亢战、
钟万勰[１]将斜拉索和桥面简化为两个刚体质量块ꎬ
首次提出了索梁组合结构的参数振动模型ꎬ分析了

索梁结构的参数共振问题ꎻ２００１ 年ꎬ汪至刚等[２] 考

虑了桥面的质量与刚度作用ꎬ并将斜拉索简化为

弦ꎬ提出了索梁组合结构的弦￣质量块振动模型ꎻ
２０１８ 年ꎬ吴娟等[３] 研究另一类弦￣梁耦合结构的非

线性振动ꎬ并对结构稳定性进行了分析.自 ２０００ 年

以来ꎬ赵跃宇等[４－７]基于连续介质力学建立了索梁

组合结构、索拱组合结构等连续体振动模型ꎬ利用

多尺度方法分析了连续体结构可能出现的内共振

模式ꎬ开展了一系列较系统的研究工作.此外ꎬ近年

来ꎬ一些学者研究了 ＣＦＲＰ 索或 ＣＦＲＰ 索梁结构的

振动问题.如:２０１８ 年ꎬ刘海波等[８]研究 ＣＦＲＰ 索对

斜拉桥全局模态频率的敏感性ꎻ康厚军等[９]建立了

ＣＦＲＰ 索梁振动力学模型ꎬ双索梁模型平面内自由

振动的特征值问题.国外研究方面ꎬ１９９３ 年ꎬＹ. Ｆｕ￣
ｊｉｎｏ 等 [１０]从理论和实验两方面分析了三自由度索

梁组合结构的自激参数共振问题ꎻ２０００ 年ꎬＣａｅｔａｎｏ
等[１１ꎬ１２]通过实验研究了斜拉桥中索与桥面或桥塔

的动力作用ꎻ２００３ 年ꎬＧａｔｔｕｌｌｉ[１３]研究了索梁组合结

构面内非线性作用ꎻ２０１１ 年ꎬ Ｚｈｕ 等[１４] 构建了含

局部损伤的索梁组合结构模型ꎬ探讨了局部损伤对

索梁组合结构动力响应的影响.
为简化计算ꎬ研究过程中斜拉索一般不考虑抗

弯刚度.但近年随着斜拉索长度的增加ꎬ斜拉索直

径也越来越大ꎬ其抗弯刚度对斜拉索振动的影响值

得深入研究.２００８ 年ꎬ赵跃宇等[１５] 研究了弯曲刚度

对斜拉索非线性固有频率的影响.本文基于 Ｈａｍｉｌ￣
ｔｏｎ 变分原理建立含抗弯刚度的钢质索梁组合结构

控制方程ꎬ通过 Ｇａｌｅｒｋｉｎ 方法离散ꎬ并采用多尺度

摄动法求解ꎬ研究了抗弯刚度对索幅频响应和激频

响应的影响ꎬ数值模拟含抗弯刚度索梁组合结构的
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时程曲线ꎬ获得了一些具有工程意义的结论.

１　 建立控制方程

图 １ 显示了从斜拉桥中简化的索梁组合结构

模型ꎬ为了便于建模ꎬ斜拉索的振动在局部坐标系

ｘｏｙ 中描述ꎬ梁的振动在另一个局部坐标系ｘｏｙ中描

述ꎬθ 为斜拉索的水平倾角ꎬｌｃ、ｌｂ 为斜拉索和梁在

局部坐标系中的跨度ꎬｄ 为斜拉索在局部坐标系中

的垂度.

图 １　 索梁组合结构模型

Ｆｉｇ.１　 Ｍｏｄｅｌ ｏｆ ｃａｂｌｅ￣ｓｔａｙｅｄ ｂｅａｍ

用 ｕｃ、ｕｂ 分别表示索和梁的纵向振动位移ꎬｖｃ、
ｖｂ 分别表示索和梁的横向振动位移ꎬ索、梁在右端

端点铰接ꎬ根据索梁位移协调条件ꎬ可以得到如下

关系式:

ｕｃ( ｌｃꎬｔ)＝
ｖｂ( ｌｂꎬｔ)－ｖｃ( ｌｃꎬｔ)ｃｏｓθ

ｓｉｎθ
(１ａ)

ｕｂ( ｌｂꎬｔ)＝
ｖｂ( ｌｂꎬｔ)ｃｏｓθ－ｖｃ( ｌｃꎬｔ)

ｓｉｎθ
(１ｂ)

假设 ρｃ 表示斜拉索的密度ꎬＡｃ 为截面面积ꎬｃｃ
为阻尼系数ꎬＨ 为初始张力ꎬＥｃ 为弹性模量ꎬＩｃ 为截

面惯性矩.设 ρｂ 为梁的密度、Ａｂ 为截面面积、ｃｂ 为

阻尼系数、Ｎ０ 为始轴力、Ｅｂ 为弹性模量、Ｉｂ 为截面

惯性矩.基于如下假定:忽略斜拉索的材料非线性ꎻ
不考虑斜拉索的扭转刚度、剪切刚度ꎻ斜拉索质量

沿曲线方向连续均匀分布.忽略索梁纵向惯性力的

影响ꎬ利用 Ｈａｍｉｌｔｏｎ 变分原理可以推导含抗弯刚度

索梁组合结构耦合振动偏微分方程:
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将方程组(２ａ)、(２ｂ)与参考文献[１６]中斜拉

索的振动偏微分方程对比显示ꎬ在方程 (２ａ) 中

ＥｃＩｃ
∂４ｖｃ(ｘꎬｔ)

∂ｘ４ 项反映了抗弯刚度对斜拉索振动的

影响.斜拉索的动应变可以写成:
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索梁锚固处的位移及力边界条件如下:
ｖｃ(０ꎬｔ)＝ ｖｂ(０ꎬｔ)＝ ０ (４ａ)
ｖ′ｂ(０ꎬｔ)＝ ０ꎻ ｖ″ｂ( ｌｂꎬｔ)＝ ０ (４ｂ)
Ｈｖ′ｃ(ｌｃꎬｔ)＋ＥｃＡｃｅｃ(ｔ)􀅰 ｖ′ｃ(ｌｃꎬｔ)＋ｙ′０(ｌｃꎬｔ)[ ]{ }􀅰

ｃｏｓθ＋ＥｃＡｃｅｃ( ｔ)ｓｉｎθ＝ＥｂＩｂｖ‴ｂ( ｌｂꎬｔ) (４ｃ)
如图 ２ 所示ꎬ索梁锚固点为 Ｓꎬ Ｓ′是锚固点振动

变形后的位置ꎻ锚固点索的纵向、横向位移分别为 ｕｃ

＝ｕｃ(ｌｃꎬｔ)和 ｖｃ ＝ ｖｃ( ｌｃꎬｔ)ꎻ锚固点梁的横向位移为 ｖｂ
＝ｖｂ(ｌｂꎬｔ)ꎬＱ 为锚固点左边的剪力ꎻＴｃｘ、Ｔｃｙ分别是斜

拉索纵向和横向张力分量ꎬ通过下式计算:
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图 ２　 索梁锚固处示意图

(ａ)几何变形ꎻ (ｂ)受力

Ｆｉｇ.２　 Ｓｃｈｅｍａｔｉｃ ｏｆ ｔｈｅ (ａ) ｇｅｏｍｅｔｒｉｃ ａｎｄ (ｂ) ｍｅｃｈａｎｉｃａｌ ｂｏｕｎｄａｒｙ

ｃｏｎｄｉｔｉｏｎｓ ａｔ ｔｈｅ ｊｕｎｃｔｉｏｎ

２　 摄动分析

２.１　 Ｇａｌｅｒｋｉｎ 离散
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ζ ｎ(ｘ)Ｖｎ( ｔ)ꎬ 对索梁组合结构耦合偏微分方程

进行 Ｇａｌｅｒｋｉｎ 高阶离散ꎬ将两式代入方程(２ａ)和

(２ｂ)中ꎬ在方程(２ａ)两边同乘以 ψｉ( ｘ)并在区间

０ꎬｌｃ[ ] 上积分ꎬ在方程(２ｂ)两边同乘以 ζｉ(ｘ)并在

区间 ０ꎬｌｂ[ ] 上积分ꎬ并考虑振型函数 ψｉ( ｘ)、ζｉ( ｘ)
的正交性ꎬ可以得到索梁组合结构多阶离散动力学
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通常ꎬ对方程组(６)进行化简ꎬ在方程(６ａ)两
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意小的正数 εꎬ按下面方式定义化简后的方程系数
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激励作用情形ꎬ在方程(６ａ)等号右边添加强迫激

励项ꎬ同时考虑外激励与 ε 同阶ꎬ索梁耦合振动方
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􀅰

ｎ ＋ ω ２
ｂꎬｎＶｎ ＋ ∑

∞

ｍ ＝ １ꎬｍ≠ｎ
εβ １ꎬｍｎＶｍ ＋

∑
∞

ｍ ＝ １
∑
∞

ｐ ＝ １
εβ ３ꎬｍｐｎＶｍＶｐ ＋

∑
∞

ｍ ＝ １
∑
∞

ｐ ＝ １
εβ ４ꎬｍｐｎＶｍＶｐ ＋

∑
∞

ｍ ＝ １
∑
∞

ｐ ＝ １
∑
∞

ｒ ＝ １
εβ ５ꎬｍｐｒｎＶｍＶｐＶｒ ＝ ０

(７ｂ)
２.２　 多尺度法求解

利用多尺度法[１７]对方程组(７)进行摄动分析ꎬ
可以得到索梁结构复数形式的近似线性常微分方

程组.为了定量描述 Ωｎ 与 ωｃꎬｎ的接近程度以及 ωｃꎬｎ

与 ωｂꎬｎ的接近程度ꎬ引入参数 σ１ 和 σ２ꎬ定义 Ωｎ ＝

８２３
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ωｃꎬｎ＋εσ１、ωｃꎬｎ ＝ ωｂꎬｎ ＋εσ２ꎬ代入近似线性微分方程

组中ꎬ消除久期项ꎬ即可获得索主共振情形下索梁

内共振的可解性条件ꎬ将极坐标形式的复函数 Ａ ｊ ＝
１
２
ａ ｊ(Ｔ１)ｅｘｐ[ ｉθ ｊ(Ｔ１)]、Ｂｋ ＝

１
２
ｂｋ(Ｔ１)ｅｘｐ[ ｉ θｋ(Ｔ１)]

代入可解性条件中ꎬ分离实部和虚部ꎬ得到索梁振

动的一组四维关于 ａ ｊ、ｂｋ、θ ｊ、θｋ 的常微分方程.

ωｃꎬｊ ａ′ｊ＋μｃꎬｊａ ｊ( ) ＋ １
２
α２ꎬｋｊｂｋｓｉｎϑ１＋

１
２
ｆ ｊｓｉｎϑ２ ＝ ０ (８ａ)

ωｃꎬｊθ′ｊａ ｊ－
３
８
α５ꎬｊｊｊｊａ３

ｊ －
１
２
α２ꎬｋｊｂｋｃｏｓϑ１－

１
２
ｆ ｊｃｏｓϑ２ ＝ ０ (８ｂ)

ωｂꎬｋｂ′ｋ＋ωｂꎬｋμｂꎬｋｂｋ ＝ ０ (８ｃ)

ωｂꎬｋθ′ｋｂｋ－
３
８
β５ꎬｋｋｋｋｂ３

ｋ ＝ ０ (８ｄ)

上式中ꎬϑ１ ＝ θｋ－θ ｊ－σ１Ｔ１ꎻϑ２ ＝σ２Ｔ１－θ ｊ .
从上面方程组可以看出ꎬ方程(８ａ)、(８ｂ)存在

梁的振动项ꎬ而方程(８ｃ)、(８ｄ)中不存在索的振动

项ꎬ说明梁的振动是独立的ꎬ索振动对梁振动没有

影响ꎻ梁的振动对索的振动有影响. 方程 ( ８ｃ)、
(８ｄ)可以单独求解ꎬ其解的形式如下:

ｂｋ ＝ ｂｋ０ｅｘｐ －εμｂꎬｋ ｔ( ) (９ａ)

θｋ ＝ －
３β５ꎬｋｋｋｋ

１６μｂꎬｋωｂꎬｋ
ｂ２
ｋ０ｅｘｐ －２εμｂꎬｋ ｔ( ) ＋θｋ０ (９ｂ)

其中ꎬｂｋ０、θｋ０是积分常数.从上面的结果可以看出ꎬ
振幅随时间而衰减ꎬ即梁的振动随时间的衰减ꎬ最
后趋于静止状态ꎬ但是ꎬ在振动衰减的过程中ꎬ相位

和频率都依赖于振幅.综上可得ꎬ梁振动的稳态解

ｂｋ ＝ ０ꎬ将该结果代入斜拉索振动方程(８ａ)、(８ｂ)
中ꎬ并求稳态解ꎬ化简后可以得到:

ωｃꎬｊμｃꎬｊａ ｊ＋
１
２
ｆ ｊｓｉｎϑ２ ＝ ０ (１０ａ)

ωｃꎬｊσ２ａ ｊ－
３
８
α５ꎬｊｊｊｊａ３

ｊ －
１
２
ｆ ｊｃｏｓϑ２ ＝ ０ (１０ｂ)

通过消除上面方程组中的 ϑ２ꎬ可以得到该情

形下的斜拉索频率响应方程.

ωｃꎬｊμｃꎬｊａ ｊ( ) ２＋ ωｃꎬｊσ２ａ ｊ－
３
８
α５ꎬｊｊｊｊａ３

ｊ
æ

è
ç

ö

ø
÷

２

＝
ｆ２ｊ
４

(１１)
为判断斜拉索振动的稳定性ꎬ引入 Ａ ｊ 的直角

坐标形式 Ａ ｊ ＝
１
２

ｐ ｊ－ｉｑ ｊ( ) ｅｘｐ ｉσ２Ｔ１( ) ꎬ将其代入可解

性条件中ꎬ并考虑 ｂｋ ＝ ０ꎬ分离实部和虚部ꎬ即可以

得到直角坐标形式的斜拉索运动的平均方程.

ｐ′ｊ ＝ －σ２ｑ ｊ－μｃꎬｊｐ ｊ＋
３

８ωｃꎬｊ
α５ꎬｊｊｊｊ ｐ２

ｊ ＋ｑ２
ｊ( ) ｑ ｊ (１２ａ)

ｑ′ｊ ＝σ２ｐ ｊ－μｃꎬｊｑ ｊ－
３

８ωｃꎬｊ
α５ꎬｊｊｊｊ ｐ２

ｊ ＋ｑ２
ｊ( ) ｐ ｊ－

ｆ ｊ
２ωｃꎬｊ

(１２ｂ)
列出平均方程(１２)的 Ｊａｃｏｂｉａｎ 矩阵ꎬ从而可以

得到斜拉索振动的特征方程ꎬ通过特征值的符号可

以判断索运动的稳定性.

－λ－μｃꎬｊ＋
３

４ωｃꎬｊ
α５ꎬｊｊｊｊｐ ｊｑ ｊ －σ２＋

３
８ωｃꎬｊ

α５ꎬｊｊｊｊ ｐ２
ｊ ＋３ｑ２

ｊ( )

σ２－
３

８ωｃꎬｊ
α５ꎬｊｊｊｊ ３ｐ２

ｊ ＋ｑ２
ｊ( ) －λ－μｃꎬｊ－

３
４ωｃꎬｊ

α５ꎬｊｊｊｊｑ ｊｐ ｊ

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

＝ ０ (１３)
求得上面特征方程的特征值 λ ｉ( ｉ ＝ １ꎬ２)后ꎬ再

根据 Ｌｙａｐｕｎｏｖ 稳定理论即可判断斜拉索振动的稳

定性.

３　 算例分析

３.１　 索梁结构参数

算例取已建成的某斜拉桥中索梁结构ꎬ斜拉索

参数如下:单位长度质量 ρｃＡｃ ＝ １００.２９ｋｇ / ｍꎬ弹性

模量 Ｅｃ ＝ ２.１×１０１１Ｎ / ｍ２ꎬ截面面积 Ａｃ ＝ ０.０１２ｍ２ꎬ截
面惯性矩 Ｉｃ ＝ １.１５×１０－５ｍ４ꎬ长度 ｌｃ ＝ ５７７ｍꎬ水平倾

角 θ＝ ２３°.设斜拉索的静变形曲线方程为 ｙ０( ｘ) ＝
４λｘ ｌｃ－ｘ( ) / ｌｃꎬ垂跨比 λ ＝ ｄ / ｌｃ .其中ꎬｄ 为斜拉索的

理论垂度ꎬｄ ＝ ６.９１４ｍꎬＨ 为斜拉索的初始弦向张

力ꎬＨ＝ ５４７１ｋＮ.垂度 ｄ 与张力 Ｈ 之间满足静力平衡

关系 ｄ ＝ ρｃＡｃｃｏｓθ􀅰ｇｌｃ ２ / ８Ｈ.其中ꎬｇ 为重力加速度.
斜拉索两端铰接ꎬ振型函数为 φｋ(ｘ)＝ ｓｉｎ(ｋπｘ / ｌｃ) .

梁的参数同样取自该桥的梁断面 ρｂＡｂ ＝ ３.５８×

１０４ｋｇ / ｍꎬ梁横截面面积抗压刚度 ＥｂＡｂ ＝ ９. ３７８ ×

１０１１Ｎꎬ梁横截面积 Ａｂ ＝ ４. ４７ｍ２ꎬ抗弯刚度 ＥｂＩｂ ＝

１.７５×１０１２Ｎ􀅰ｍ２ꎬ抗弯截面惯性矩 Ｉｂ ＝ ８.３２ｍ４ꎬ梁长

ｌｂ ＝ ５３６ｍꎬＮ０ ＝ １.００７２×１０７Ｎ.振动函数为 γｋ( ｘ) ＝
ｓｉｎ(ｋπｘ / ｌｂ)ꎬ最大悬臂端竖向位移 Δ＝ ０.２ｍ.
３.２　 索梁结构中抗弯刚度索面内基频及参数分析

图 ３ 给出了索梁结构中斜拉索和两端铰支斜

拉索面内基频的关系图ꎬ如图所示ꎬ随着索长的增

９２３
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加ꎬ两种斜拉索的面内基频都逐渐减小ꎬ在索长约

小于 ２２０ｍ 范围内ꎬ面内基频快速减小. 索长从

１００ｍ 增加至 ６００ｍꎬ索梁结构中斜拉索面内基频比

两端铰支斜拉索的面内基频增大约 ５.２％ ~８.９％.

图 ３　 索梁结构中斜拉索与两端铰支斜拉索面内基频的对比

Ｆｉｇ.３　 Ｃｏｍｐａｒｉｓｏｎ ｏｆ ｉｎ￣ｐｌａｎｅ ｆｕｎｄａｍｅｎｔａｌ ｆｒｅｑｕｅｎｃｙ ｏｆ ｈｉｎｇｅｄ ｃａｂｌｅ

ａｎｄ ｔｈｅ ｃａｂｌｅ ｉｎ ｔｈｅ ｃａｂｌｅ￣ｓｔａｙｅｄ ｂｅａｍ

下面分析索长 ｌｃ、初张力 Ｈ 及抗拉刚度 ＥｃＡｃ

对含抗弯刚度索面内基频的影响ꎬ并与不考虑抗弯

刚度索面内基频进行对比.
图 ４ 描绘了索长对含抗弯刚度斜拉索面内基

频的影响关系.该图显示ꎬ索面内基频随索长的增

大而减小ꎬ索长增加了索的柔性ꎬ降低索的基频ꎬ索
长从 １００ｍ 增大至 ６００ｍꎬ考虑抗弯刚度影响后ꎬ索
面内基频绝对增量从 １.６７２Ｈｚ 变化至 ０.００９Ｈｚꎬ基
频值相对增加百分比从 ３３.６％变化至 １.１％ꎬ索长

大约为 ２８０ｍ 以上ꎬ基频值相对增加百分比降低至

５％以下ꎬ索长对面内基频影响较大.

图 ４　 索长对含抗弯刚度斜拉索面内基频的影响

Ｆｉｇ.４　 Ｅｆｆｅｃｔ ｏｆ ｃａｂｌｅ ｌｅｎｇｔｈ ｏｎ ｉｎ￣ｐｌａｎｅ ｆｕｎｄａｍｅｎｔａｌ ｆｒｅｑｕｅｎｃｙ ｏｆｆ

ｔｈｅ ｓｔａｙ ｃａｂｌｅ ｗｉｔｈ ｆｌｅｘｕｒａｌ ｓｔｉｆｆｎｅｓｓ

图 ５ 给出了初张力对含抗弯刚度斜拉索面内

基频的影响.从图中可以看出ꎬ索面内基频随初张

力的增大而增大ꎬ抗弯刚度能够提高索面内基频ꎬ
初张力从 ０ 增大至 ５０００ｋＮꎬ考虑抗弯刚度后ꎬ索面

内基频绝对增量从 ０.０１３Ｈｚ 变化至 ０.００６Ｈｚꎬ基频

值相对增加百分比从 １.９４％变化至 ０.４５％.

图 ５　 初张力对含抗弯刚度斜拉索面内基频的影响

Ｆｉｇ.５　 Ｅｆｆｅｃｔ ｏｆ ｉｎｉｔｉａｌ ｔｅｎｓｉｏｎ ｏｎ ｉｎ￣ｐｌａｎｅ ｆｕｎｄａｍｅｎｔａｌ ｆｒｅｑｕｅｎｃｙ

ｏｆ ｔｈｅ ｓｔａｙ ｃａｂｌｅ ｗｉｔｈ ｆｌｅｘｕｒａｌ ｓｔｉｆｆｎｅｓｓ

抗拉刚度对含抗弯刚度斜拉索面内基频的影

响如图 ６ 所示.图 ６ 表明ꎬ索面内基频随抗拉刚度

的增大而增大ꎬ抗弯刚度能够提高索面内基频ꎬ索
的初张力从 １×１０９Ｎ 增大至 ６×１０９Ｎꎬ考虑抗弯刚度

影响后ꎬ索面内基频绝对增量从 ０. ０１２Ｈｚ 变化至

０.００７Ｈｚꎬ基频值相对增加百分比从 １.６７％变化至

０.５３％.

图 ６　 抗拉刚度对含抗弯刚度斜拉索面内基频的影响

Ｆｉｇ.６　 Ｅｆｆｅｃｔ ｏｆ ｔｅｎｓｉｌｅ ｓｔｉｆｆｎｅｓｓ ｏｎ ｉｎ￣ｐｌａｎｅ ｆｕｎｄａｍｅｎｔａｌ ｆｒｅｑｕｅｎｃｙ ｏｆ

ｔｈｅ ｓｔａｙ ｃａｂｌｅ ｗｉｔｈ ｆｌｅｘｕｒａｌ ｓｔｉｆｆｎｅｓｓ

３.３　 抗弯刚度对系统动力响应的影响

利用 ＡＮＳＹＳ 分析软件对索梁组合结构进行特

征值分析ꎬ得到索梁前 １０ 阶模态和频率ꎬ发现索的

第 ３ 阶频率与梁的第 ４ 阶频率较为接近.下面以斜

０３３
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拉索的面内第 ３ 阶模态为例ꎬ对索梁结构中斜拉索

的动力行为进行分析ꎬ并研究抗弯刚度的影响.
表 １　 索第 ３ 阶模态时的平均方程各个系数值

Ｔａｂｌｅ １　 Ｔｈｅ ｃｏｅｆｆｉｃｉｅｎｔｓ ｏｆ ａｖｅｒａｇｉｎｇ ｅｑｕａｔｉｏｎ

σ１ ωｃꎬ３ ωｂꎬ４ α５ꎬ３３３３ β５ꎬ４４４４ α２ꎬ３３

０.０８９ ３.９６２ ３.８７３ ０.４２２４ １.９９０２ －２.０３７８

在斜拉索受到外激励荷载作用时ꎬ斜拉索的幅

频响应曲线、激频响应曲线见图 ７ 和图 ８ꎬ通过索

梁内共振作用ꎬ弹性梁出现的响应非常小ꎬ基本可

以忽略不计ꎬ未考虑抗弯刚度影响的响应在图中用

虚线表示.从图中可以看出ꎬ抗弯刚度未改变曲线

的非线性形态ꎬ在幅频响应曲线中ꎬ考虑抗弯刚度

后的幅频响应曲线整体向左平移ꎬ在激频响应曲线

中ꎬ考虑抗弯刚度后的激频响应曲线整体向右平

移ꎬ其主要原因是ꎬ考虑抗弯刚度后ꎬ斜拉索的频率

略有增大.

图 ７　 斜拉索频率响应曲线

Ｆｉｇ.７　 Ｆｒｅｑｕｅｎｃｙ ｒｅｓｐｏｎｓｅ ｃｕｒｖｅ ｏｆ ｔｈｅ ｃａｂｌｅ

图 ８　 斜拉索激励响应曲线

Ｆｉｇ.８　 Ｓｔｉｍｕｌｕｓ￣ｒｅｓｐｏｎｓｅ ｃｕｒｖｅ ｏｆ ｔｈｅ ｃａｂｌｅ

图 ７ 中所示曲线的激励荷载 Ｆ３ ＝ ２１８.４８ｋＮ / ｍꎬ

当激励频率 Ω３<４.０１６ 时ꎬ斜拉索呈单值性ꎬ幅值随

激励频率增大而增大ꎻ当激励频率 Ω３≈４.０１６ 时ꎬ
斜拉索出现鞍结分叉点ꎬ从该点产生两条曲线ꎬ一
条稳定ꎬ另一条不稳定ꎻ当激励频率 Ω３>４.０１６ 时ꎬ
理论上系统出现三个幅值ꎬ实际出现的幅值由初始

条件确定.
在图 ８ 的激频响应曲线中ꎬ此时外激励频率

Ω３ ＝ ４.１６２ꎬ当外激励荷载 Ｆ３<１９４.０１ｋＮ / ｍ 时ꎬ幅值

响应为单值ꎻ当 １９４.０１ｋＮ / ｍ≤Ｆ３ ≤１４９４.５３ｋＮ / ｍ
时ꎬ幅值响应呈多值性ꎻ当 Ｆ３>１４９４.５３ｋＮ / ｍ 时ꎬ幅
值响应又回到单值.因此ꎬ当激励荷载由小到大逐

渐增大或由大到小逐渐减小时ꎬ幅值响应存在向上

跳跃和向下跳跃的特点ꎬ这是非线性响应表现出的

特点.

图 ９　 系统时间历程曲线

(ａ)斜拉索ꎻ (ｂ)梁(Ｖ３(０)＝ ０ꎬＶ４(０)＝ ０.０１ｍ)

Ｆｉｇ.９　 Ｔｉｍｅ￣ｈｉｓｔｏｒｙ ｃｕｒｖｅ ｏｆ ｔｈｅ ｓｙｓｔｅｍ

(ａ)ｃａｂｌｅꎻ (ｂ)ｂｅａｍ(Ｖ３(０)＝ ０ꎬＶ４(０)＝ ０.０１ｍ)

将索梁的结构及几何参数直接代入索梁组合

耦合方程中ꎬ斜拉索的初始位移为 ０ꎬ梁的初始位

移为 ０.０１ｍꎬ运用四阶 Ｒｕｎｇｅ￣ｋｕｔｔａ[１８] 法求解ꎬ可以

得到索梁的时程曲线ꎬ如图 ９ 所示.图 ９ 显示了索

梁的时间历程曲线ꎬ从图中可以看出ꎬ原本静止的

１３３
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斜拉索振动呈现“拍”的特性ꎬ梁的振幅基本处于

初始位移ꎬ斜拉索的振动对梁的振动影响很小ꎬ在
实际工程中基本可以忽略.

４　 结论

基于变分原理ꎬ建立了含抗弯刚度的索梁组合

结构振动偏微分方程组ꎻ利用 Ｇａｌｅｒｋｉｎ 方法ꎬ获得

了索梁结构高阶离散模型ꎻ运用多尺度摄动法ꎬ将
非线性微分方程转化为线性微分方程ꎻ求解了索发

生主共振时系统的动力响应ꎻ获得了抗弯刚度斜拉

索幅频响应方程ꎻ分析了索主要参数对抗弯刚度斜

拉索面内基频的影响ꎻ探讨了抗弯刚度对斜拉索幅

频响应、激频响应的影响.
(１)考虑抗弯刚度后ꎬ索长对索面内基频影响

较大ꎬ对于短索ꎬ在进行索梁结构的非线性响应分

析时ꎬ应考虑索的抗弯刚度ꎬ而在分析初张力、抗拉

刚度的影响时ꎬ工程应用中基本可忽略索抗弯刚

度.
(２)考虑抗弯刚度后ꎬ斜拉索的幅频响应曲线

整体向右平移ꎬ激频响应曲线向左移ꎬ移动的幅度

取决于抗弯刚度的大小ꎬ总体影响很小.
(３) 在索梁结构中ꎬ梁振动将对索振动产生显

著影响ꎬ索的振动对梁的振动影响较小ꎬ在工程应

用上ꎬ索振动对梁振动的影响基本可忽略.
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Ａｂｓｔｒａｃｔ　 Ｃｏｎｓｉｄｅｒｉｎｇ ｔｈｅ ｆｌｅｘｕｒａｌ ｒｉｇｉｄｉｔｙꎬ ｓａｇｇｉｎｇ ａｎｄ ｇｅｏｍｅｔｒｉｃ ｎｏｎｌｉｎｅａｒｉｔｙꎬ ｔｈｅ ｎｏｎｌｉｎｅａｒ ｒｅｓｐｏｎｓｅｓ ｏｆ ｓｔａｙ
ｃａｂｌｅｓ ｉｎ ｃａｂｌｅ￣ｓｔａｙｅｄ ｂｅａｍｓ ｗｅｒｅ ｉｎｖｅｓｔｉｇａｔｅｄ. Ｔｈｅ ｎｏｎｌｉｎｅａｒ ｄｙｎａｍｉｃａｌ ｅｑｕａｔｉｏｎｓ ｏｆ ｔｈｅ ｃａｂｌｅ￣ｓｔａｙｅｄ ｂｅａｍ ｗｅｒｅ
ｆｏｒｍｕｌａｔｅｄ ｂｙ Ｈａｍｉｌｔｏｎｉａｎ ｐｒｉｎｃｉｐｌｅ. Ｔｈｅｎꎬ ｔｈｅｓｅ ｅｑｕａｔｉｏｎｓ ｗｅｒｅ ｄｉｓｃｒｅｔｉｚｅｄ ｂｙ ｔｈｅ Ｇａｌｅｒｋｉｎ ｍｅｔｈｏｄꎬ ａｎｄ ｔｈｅ ｒｅ￣
ｓｐｏｎｓｅｓ ｏｆ ｔｈｅ ｃａｂｌｅ ｉｎ ｔｈｅ ｃａｂｌｅ￣ｓｔａｙｅｄ ｂｅａｍ ｗｅｒｅ ｏｂｔａｉｎｅｄ ｕｓｉｎｇ ｔｈｅ Ｍｕｌｔｉｐｌｅ Ｓｃａｌｅｓ ｍｅｔｈｏｄ. Ｔｈｅ ｉｎｆｌｕｅｎｃｅ ｏｆ
ｍａｉｎ ｐａｒａｍｅｔｅｒｓ ｏｎ ｔｈｅ ｆｕｎｄａｍｅｎｔａｌ ｆｒｅｑｕｅｎｃｙ ｏｆ ｔｈｅ ｃａｂｌｅ ｉｎ ｐｌａｎｅ ｗａｓ ａｎａｌｙｚｅｄ. Ｔｈｅ ｅｆｆｅｃｔｓ ｏｆ ｆｌｅｘｕｒａｌ ｒｉｇｉｄｉｔｙ
ｏｎ ｂｏｔｈ ｔｈｅ ｆｒｅｑｕｅｎｃｙ ｒｅｓｐｏｎｓｅ ａｎｄ ａｍｐｌｉｔｕｄｅ ｒｅｓｐｏｎｓｅ ｗｅｒｅ ｅｘａｍｉｎｅｄ. Ｔｈｅ ｔｉｍｅ ｈｉｓｔｏｒｙ ｒｅｓｐｏｎｓｅｓ ｏｆ ｔｈｅ ｃａｂｌｅ￣
ｓｔａｙｅｄ ｂｅａｍ ｗｅｒｅ ａｌｓｏ ｏｂｔａｉｎｅｄ ｂｙ ｎｕｍｅｒｉｃａｌ ｓｉｍｕｌａｔｉｏｎｓ. Ｉｔ ｗａｓ ｓｈｏｗｎ ｔｈａｔ ｔｈｅ ｃａｂｌｅ ｌｅｎｇｔｈ ｈａｓ ａ ｇｒｅａｔ ｅｆｆｅｃｔ ｏｎ
ｔｈｅ ｆｕｎｄａｍｅｎｔａｌ ｆｒｅｑｕｅｎｃｙ ｏｆ ｔｈｅ ｃａｂｌｅꎬ ａｎｄ ｆｏｒ ａ ｓｈｏｒｔ ｃａｂｌｅꎬ ｔｈｅ ｆｌｅｘｕｒａｌ ｒｉｇｉｄｉｔｙ ｓｈｏｕｌｄ ｂｅ ｔａｋｅｎ ｉｎｔｏ ａｃｃｏｕｎｔ.
Ｔｈｅ ｆｒｅｑｕｅｎｃｙ ｒｅｓｐｏｎｓｅ ｃｕｒｖｅ ｍｏｖｅｓ ｔｏ ｔｈｅ ｒｉｇｈｔꎬ ｂｕｔ ｔｈｅ ａｍｐｌｉｔｕｄｅ ｒｅｓｐｏｎｓｅ ｃｕｒｖｅ ｍｏｖｅｓ ｔｏ ｔｈｅ ｌｅｆｔꎬ ｗｈｅｎ ｔｈｅ
ｆｌｅｘｕｒａｌ ｒｉｇｉｄｉｔｙ ｉｓ ｃｏｎｓｉｄｅｒｅｄ. Ｔｈｅ ａｍｏｕｎｔ ｏｆ ｍｏｖｅｍｅｎｔ ｄｅｐｅｎｄｓ ｏｎ ｔｈｅ ｍａｇｎｉｔｕｄｅ ｏｆ ｆｌｅｘｕｒａｌ ｒｉｇｉｄｉｔｙ. Ｔｈｅ ｖｉｂｒａ￣
ｔｉｏｎ ｏｆ ｔｈｅ ｂｅａｍ ｈａｓ ａ ｓｉｇｎｉｆｉｃａｎｔ ｉｍｐａｃｔ ｏｎ ｔｈａｔ ｏｆ ｔｈｅ ｃａｂｌｅꎬ ｗｈｉｌｅ ｔｈｅ ｖｉｂｒａｔｉｏｎ ｏｆ ｔｈｅ ｃａｂｌｅ ｈａｓ ｌｉｔｔｌｅ ｅｆｆｅｃｔ ｏｎ
ｔｈａｔ ｏｆ ｔｈｅ ｂｅａｍ.

Ｋｅｙ ｗｏｒｄｓ　 ｃａｂｌｅ￣ｓｔａｙｅｄ ｂｒｉｄｇｅꎬ　 ｃａｂｌｅ￣ｓｔａｙｅｄ ｂｅａｍꎬ　 ｆｌｅｘｕｒａｌ ｒｉｇｉｄｉｔｙꎬ　 ｎｏｎｌｉｎｅａｒ ｒｅｓｐｏｎｓｅ
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附录:
　 　 方程组(６)中各系数如下:

ｋｎｉ
１ ＝ － ∫ｌ ｃ

０
ρ ｃＡｃψ ｎ(ｘ)ψ ｉ(ｘ)ｄｘ

ｋｎｉ
２ ＝ － ∫ｌ ｃ

０
ｃｃψ ｎ(ｘ)ψ ｉ(ｘ)ｄｘ

ｋｍｉ
３ ＝ ∫ｌ ｃ

０

Ｈψ″ｍ(ｘ) ＋

ＥｃＡｃｙ″０
ψｍ( ｌｃ)ｃｏｓθ

ｌｃｓｉｎθ
＋

ＥｃＡｃｙ″０
１
ｌｃ
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０
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ＥｃＩｃψ‴′ｍ(ｘ)
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ｋｍｉ
４ ＝ － ∫ｌ ｃ

０
ＥｃＡｃｙ″０

ζｍ( ｌｂ)
ｌｃｓｉｎθ

ψ ｉ(ｘ)ｄｘ

ｋｍｐｉ
５ ＝ － ∫ｌ ｃ

０
ＥｃＡｃψ″ｍ(ｘ)

ζ ｐ( ｌｂ)
ｌｃｓｉｎθ

ψ ｉ(ｘ)ｄｘ

ｋｍｐｉ
６ ＝ ∫ｌ ｃ

０
ＥｃＡｃ

ｙ″０
１
２ｌｃ
∫ｌ ｃ

０
ψ′ｍ(ｘ)ψ′ｐ(ｘ)ｄｘ ＋

ψ″ｍ(ｘ)
ψ ｐ( ｌｃ)〗ｃｏｓθ

ｌｃｓｉｎθ
－

ψ ″
ｍ(ｘ)

１
ｌｃ
∫ｌ ｃ

０
ｙ′０ψ′ｐ(ｘ)ｄｘ
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ｋｍｐｒｉ
７ ＝ ∫ｌ ｃ

０

ＥｃＡｃψ″ｍ(ｘ) ×

１
２ｌｃ
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０
ψ′ｐ(ｘ)ψ′ｒ(ｘ)ｄｘ
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ψ ｉ(ｘ)ｄｘ

ｋｎｉ
１ ＝ － ∫ｌ ｂ

０
ρ ｂＡｂζ ｎ(ｘ)ζ ｉ(ｘ)ｄｘ

ｋｎｉ
２ ＝ － ∫ｌ ｂ

０
ｃｂζ ｎ(ｘ)ζ ｉ(ｘ)ｄｘ

ｋｍｉ
３ ＝ ∫ｌ ｂ

０
Ｎ０ζ″ｍ(ｘ) － ＥｂＩｂζ‴′ｍ(ｘ)[ ] ζ ｉ(ｘ)ｄｘ

ｋｍｐｉ５ ＝ － Ｎ０ － ＥｂＡｂ( ) ∫ｌ ｂ
０
ζ″ｍ(ｘ)

ψｐ(ｌｃ)
ｌｂｓｉｎθ

ζ ｉ(ｘ)ｄｘ

ｋｍｐｉ６ ＝ Ｎ０ － ＥｂＡｂ( ) ∫ｌ ｂ
０
ζ″ｍ(ｘ)

ζ ｐ(ｌｂ)ｃｏｓθ
ｌｂｓｉｎθ

ζ ｉ(ｘ)ｄｘ

ｋｍｐｒｉ７ ＝ － Ｎ０ － ＥｂＡｂ( ) ×

∫ｌ ｂ
０
ζ″ｍ(ｘ)

１
２ｌｂ
∫ｌ ｂ

０
ζ′ｐ(ｘ)ζ′ｒ(ｘ)ｄｘζ ｉ(ｘ)ｄｘ
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