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摘要　 研究含时滞的大规模 ｖａｎ ｄｅｒ Ｐｏｌ⁃Ｄｕｆｆｉｎｇ 耦合振子系统的非线性动力学． 通过讨论特征方程根分布情

况确定系统的稳定性，并在耦合时滞和强度平面上给出振幅死亡区域． 结合数值算例，揭示同步和异步周期

振荡、概周期运动以及混沌吸引子等现象． 基于非线性振子电路和时滞电路，构建电路实验平台，有效验证

理论和数值结果． 研究结果表明，时滞可以显著影响系统动力学特性，如诱发振幅死亡、稳定性切换以及复

杂振荡等．
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引言

近年来，由于在人工智能、协同控制、保密通

信、动力吸振、疾病传播以及动物迁徙等领域的广

泛应用，耦合振子已经成为重要研究对象［１－３］ ． 在

耦合系统中，各个振子有其自身的特性，但耦合作

用直接影响耦合后整体系统的运动特征及其变化，
如同步、振幅死亡、多稳态以及混沌等［２－４］ ．

在实际耦合过程中，由于信号的传输时间、记
忆效应以及反馈控制等因素，各个振子之间的相互

作用（如力、电等）不可避免地存在着时间滞后现

象［５－８］ ． 这类系统采用时滞微分方程描述，其根本

特点在于状态的演化趋势（变化率），不仅依赖于

系统当前的状态，也依赖于系统过去某一时刻或一

段时间的状态． 与无时滞系统相比，时滞可诱发丰

富而有趣的动力学行为［２，５，７］ ．
Ｖａｎ ｄｅｒ Ｐｏｌ⁃Ｄｕｆｆｉｎｇ 振子可用于描述多种系

统，如电路和神经元等［９－１４］ ． Ｘｕ［１０］等研究了含时滞

的 ｖａｎ ｄｅｒ Ｐｏｌ⁃Ｄｕｆｆｉｎｇ 振子，发现了时滞诱导的锁

相振动、倍周期分岔、概周期振荡以及混沌吸引子

等；Ｍａｃｃａｒｉ［１１］等利用时滞位移和速度反馈控制法

研究了 ｖａｎ ｄｅｒ Ｐｏｌ⁃Ｄｕｆｆｉｎｇ 系统的振动问题；Ｚａｎｇ
等［１２］考察了两耦合 ｖａｎ ｄｅｒ Ｐｏｌ⁃Ｄｕｆｆｉｎｇ 振子的稳定

性和 Ｈｏｐｆ 分岔，采用中心流形降阶和规范型理论

以及群表示定理等研究了分岔周期解；Ｊｉａｎｇ［１３］ 等

研究了两耦合时滞 ｖａｎ ｄｅｒ Ｐｏｌ⁃Ｄｕｆｆｉｎｇ 振子的

Ｄｏｕｂｌｅ Ｈｏｐｆ 分岔，揭示了周期解、概周期解等；
Ｌｉｕ［１４］等考虑了多时滞耦合 ｖａｎ ｄｅｒ Ｐｏｌ⁃Ｄｕｆｆｉｎｇ 振

子的 Ｂｏｇｄａｎｏｖ⁃Ｔａｋｅｎｓ 分岔和余维三分岔，揭示了

多平衡点和各类极限环等．
本文研究时滞耦合 ｖａｎ ｄｅｒ Ｐｏｌ⁃Ｄｕｆｆｉｎｇ 振子

环，如图 １ 所示． 该系统由任意多个振子通过双向

连接与最邻近的振子相互耦合构成． 环状结构在诸

如电路、神经网络、机电传感器、安全通信等领域有

重要的应用［１５，１６］ ．

图 １　 时滞耦合双向环状 ｖａｎ ｄｅｒ Ｐｏｌ⁃Ｄｕｆｆｉｎｇ 系统

Ｆｉｇ．１　 Ｔｈｅ ａｒｃｈｉｔｅｃｔｕｒｅ ｏｆ ｂｉｄｉｒｅｃｔｉｏｎａｌ ｒｉｎｇ ｖａｎ ｄｅｒ Ｐｏｌ⁃Ｄｕｆｆｉｎｇ

ｏｓｃｉｌｌａｔｏｒｓ ｗｉｔｈ ｄｅｌａｙｅｄ ｃｏｕｐｌｉｎｇｓ
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１　 稳定性分析

如图 １ 所示， ｎ 个 ｖａｎ ｄｅｒ Ｐｏｌ⁃Ｄｕｆｆｉｎｇ 振子通

过含时滞的阻尼项耦合，其数学模型如下：
ｘ̈ｉ＋ε（ｘ２

ｉ －１） ｘ̇ｉ＋ｘｉ＋αｘ３
ｉ

＝ ｋ［ ｘ̇ｉ－１（ ｔ－τ）＋ｘ̇ｉ＋１（ ｔ－τ）－ｘ̇ｉ（ ｔ）］ （１）
其中，ｘｉ 为第 ｉ 个振子的位移，ε＞０ 为阻尼系数，α
表示振子中立方非线性强度，ｋ 和 τ 分别为耦合强

度和时滞 （ ｉ ｍｏｄ ｎ） ． 式（１）的矢量形式如下

Ｚ̇ ｉ（ ｔ）＝ ＡＺ ｉ（ ｔ）＋Ｂ［Ｚ ｉ－１（ ｔ－τ）＋ＢＺ ｉ＋１（ ｔ－τ）］＋
ｆ［Ｚ（ ｔ）］ （２）

其中，
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显然，原点为系统的平衡点．式（２）的特征矩阵为
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其中，Ｉ２ 为 ２×２ 的单位矩阵．

令 χ ＝ ｅ（２π／ ｎ） ｉ、ηｊ ＝ ［υ ｊ，χ ｊυ ｊ，χ２ｊυ ｊ，…，χ（ｎ－１） ｊυ ｊ］ Ｔ，

其中，υ ｊ 为 Ｓ ｊ ＝λＩ２－Ａ－Ｂｅ－λτχ－ｊ－Ｂｅ－λτχ ｊ 对应的特征

向量．系统的特征方程为

Δ（λ，τ）＝ ｄｅｔＭ（λ，τ）＝ ∏
ｎ－１

ｊ ＝ ０
ｄｅｔＳｊ ＝∏
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＝ ∏
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［λ２ ＋ （ｋ － ε）λ ＋ １ －

　 ２ｋｃｏｓ（２πｊ ／ ｎ）λｅ－λτ］ ＝ ０ （４）
其中，Δｊ（λ，τ）＝ λ２＋（ｋ－ε）λ＋１－２ｋｃｏｓ（２πｊ ／ ｎ）λｅ－λτ，
ｊ＝０，１，２…，ｎ－１．当 ｎ＝２ｍ＋１（ｍ∈ℕ ）时， Δ（λ，τ）＝

Δ０（λ，τ）∏
ｍ

ｊ＝１
［Δ ｊ（λ，τ）］ ２；而当 ｎ ＝ ２ｍ（ｍ∈ℕ ）时，

Δ（λ，τ）＝ Δ０（λ，τ）Δｍ（λ，τ）∏
ｍ－１

ｊ＝１
［Δ ｊ（λ，τ）］ ２ ．

通过分析 Δ ｊ（λ，τ）＝ ０ 的根分布情况，可确定

系统零平衡点的稳定性． 当 τ ＝ ０ 时， Δ ｊ（λ，０） ＝

λ２＋［ｋ－ε－２ｋｃｏｓ（２πｊ ／ ｎ）］λ＋１＝ ０．显然，Δｊ（λ，０）＝ ０

有两个实根，为 λ ｊ，１ ＝ （ － ｐ ｊ ＋ ｐ２
ｊ －４ ） ／ ２ 和 λ ｊ，２ ＝

（－ｐｊ－ ｐ２
ｊ －４） ／ ２．其中，ｐｊ ＝ｋ－ε－２ｋｃｏｓ（２πｊ ／ ｎ）． 当 τ＞０

时，若 λ＝±ｉω（ω＞０）为 Δｊ（λ，τ）＝ ０ 的一对纯虚根，分

离其实部和虚部，得 １－２ｋｃｏｓ（２πｊ ／ ｎ）ωｓｉｎ（ωτ）－ω２ ＝０
和 ｋ－ε－２ｋｃｏｓ（２πｊ ／ ｎ）ｃｏｓ（ωτ）＝ ０，消去谐波项，得
Ｄ ｊ（ω）＝ ω４＋［（ｋ－ε） ２－４ｋ２ｃｏｓ２（２πｊ ／ ｎ）－２］ω２＋１ ＝ ０．

如果（ｋ－ε） ２＞４ｋ２ｃｏｓ２（２πｊ ／ ｎ）成立，那么，Ｄ ｊ（ω）＝ ０
没有正实根．若 Δ ｊ（λ，０）＝ ０ 均具有负实部特征根，
则系统全时滞稳定；若 Δ ｊ（λ，０）＝ ０ 具有正实部特

征根，则系统始终不稳定．
如果 （ ｋ － ε） ２ ＜ ４ｋ２ｃｏｓ２ （ ２πｊ ／ ｎ） 成立， 那么，

Ｄ ｊ（ω）＝ ０有两个正根，为 ω±
ｊ ＝ （－ｑ ｊ± ｑ２

ｊ －４ ） ／ ２ ，

其中，ｑｊ ＝（ｋ－ε）２－４ｋ２ｃｏｓ２（２πｊ ／ ｎ）－２．相应的临界时

滞为 τ±
ｊ，ｌ ＝（θ±

ｊ ＋２ｌπ） ／ ω±
ｊ ，ｌ ＝ ０， １，２，…，θ±

ｊ ∈［０，２π）

且 ｓｉｎθ±
ｊ ＝ ［（ω±

ｊ ）２ －１］ ／ ［２ｋｃｏｓ（２πｊ ／ ｎ）ω±
ｊ ］和 ｃｏｓθ±

ｊ ＝
（ｋ－ε） ／ ［２ｋｃｏｓ（２πｊ ／ ｎ）］．此外，不难验证 ｓｇｎＲｅ［λ′（τ）

λ＝ｉω］ ＝ｓｇｎＤ′ｊ（ω）．因此，Ｒｅ［λ（τ） λ＝ ｉω］的变化方向

可由 Ｄ′ｊ（ω）的符号确定．由于 ω＞ω＋
ｊ 时，Ｄ ｊ（ω） ＞

Ｄ ｊ（ω
＋
ｊ ）＝ ０；而当 ω∈ ω－

ｊ ，ω
＋
ｊ( ) 时 Ｄ ｊ（ω） ＜Ｄ ｊ（ω

－
ｊ ）＝

０，因此，ｓｇｎＲｅ［λ′（τ＋
ｊ ）］ ＞０ 和 ｓｇｎＲｅ［λ′（τ－

ｊ ）］ ＜０．

当时滞从小变大，每次跨过对应于±ω＋
ｊ 的临界时滞

τ＋
ｊ，ｌ时，Δ ｊ（λ，τ）＝ ０ 的特征根实部由负变正，从而增

加一对具有正实部的共轭复根．而当时滞从小变

大，每次跨过对应于±ω－
ｊ 的临界时滞 τ－

ｊ，ｌ时，特征根

的实部由正变负，从而减少一对具有正实部的共轭

复根．由于 τ＋
ｊ，ｌ＋１－τ

＋
ｊ，ｌ＜τ

－
ｊ，ｌ＋１－τ

－
ｊ，ｌ， ｌ＝ ０，１，２，…给定长

区间［０，􀭹τ］，在 τ＋
ｊ 处实部由负变正的特征根个数，

总是多于在 τ－
ｊ 处实部由正变负的特征根个数． 因

此，系统发生稳定性切换，且随着时滞的增加，最终

必含有正实部的特征根，即：系统会经历有限多次稳

定性切换，并且最终不稳定［５］ ．
以上分析可总结为如下结论．
定理 １
（ａ）若所有的 Ｄ ｊ（ω） ＝ ０ 无正根，则系统零平

衡点稳定性与无时滞系统的稳定性相同．
（ｂ）若 Ｄ ｊ（ω） ＝ ０ 有两个正根，则系统零平衡

点会发生有限多次稳定性切换，最终趋于不稳定．
图 ２ 为含 ６ 个 ｖａｎ ｄｅｒ Ｐｏｌ⁃Ｄｕｆｆｉｎｇ 振子的网络

在参数 ｋ 和 τ 平面内的稳定区域，其中，ε ＝ ０．０６．

５６２
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如图 ２ 所示，绿色阴影区域为系统零平衡点的振幅

死亡区域．

图 ２　 当 ｎ＝ ６，ε＝ ０．０６ 时，耦合强度和时滞平面内的稳定区域

Ｆｉｇ．２　 Ｔｈｅ ｒｅｇｉｏｎ ｏｆ ａｍｐｌｉｔｕｄｅ ｄｅａｔｈ ｉｎ ｔｈｅ ｐｌａｎｅ ｏｆ ｔｈｅ ｃｏｕｐｌｉｎｇ ｔｉｍｅ

ｄｅｌａｙ ａｎｄ ｓｔｒｅｎｇｔｈ ｗｈｅｎ ｎ＝ ６ ａｎｄ ε＝ ０．０６

２　 数值算例

（１）ｎ＝３， ε＝ ０．０３， α＝ ０．１，ｋ ＝ ０．２５． 系统的特征

方程为 Δ（λ，τ）＝ Δ０（λ，τ）Δ２
１（λ，τ），其中 Δ０（λ，τ）＝

λ２＋（ｋ－ε）λ＋１－２ｋλｅ－λτ和 Δ１（λ，τ）＝ λ２＋ （ｋ－ε）λ＋１＋

ｋλｅ－λτ ．求解 Ｄ０（ω） ＝ ０ 和 Ｄ１（ω） ＝ ０ 得ω－
０ ＝ ０．８０，

ω＋
０ ＝ １．２５，ω－

１ ＝ ０．９４，ω＋
１ ＝ １．０６，对应的四组临界时

滞分别为 τ－
０，ｌ ＝ １． ３９，９． ２４，１７． ０９，…，τ＋

０，ｌ ＝ ４． １４，
９．１７，１４．１９，…，τ－

１，ｌ ＝３．８６，１０．５３，１７．１９，…，τ＋
１，ｌ ＝ ２．４９，

８．４２，１４．３４，…
根据定理 １ 可知：系统零平衡点的稳定区域为

（τ－
０，０，τ

＋
１，０）∪（τ－

１，０，τ
＋
０，０），不稳定区域为（０，τ－

０，０）∪
（τ＋

１，０，τ
－
１，０）∪（τ＋

０，０，＋∞ ） ．
如图 ３（ａ）所示，当 τ＝ ０．８ 时，所有振子的运动

趋于完全同步；图 ３（ｂ）表示，当 τ ＝ ２ 时，零平衡点

稳定． 图 ３（ｃ）表示，当 τ ＝ ３．６ 时，零平衡点失去稳

定，出现了满足 ｘｉ ＝ －ｘｉ＋１的异步周期振荡． 图 ３（ｄ）
表示，当 τ＝ ４ 时，零平衡点再次稳定． 由图 ３ 可知，
随着时滞的增加，系统在同步周期振荡、零平衡点，
异步周期振荡以及零平衡点之间发生切换． 这表

明：时滞可用于调控系统的稳定性和振荡模式（如
同步 ／异步） ．

（２）ｎ＝６，ε＝０．０６，α＝ ０．５，ｋ ＝ ０．２．系统的特征方

程为 Δ（λ，τ）＝ Δ０（λ，τ）Δ２
１（λ，τ）Δ２

２（λ，τ）Δ３（λ，τ），
其中，Δ０（λ，τ）＝ λ２＋（ｋ－ε）λ＋１－２ｋλｅ－λτ，Δ１（λ，τ）＝

λ２＋（ｋ－ε）λ＋１－ｋλｅ－λτ，Δ２（λ，τ）＝ λ２＋（ｋ－ε）λ＋１ ＋

ｋλｅ－λτ，Δ３（λ，τ） ＝ λ２ ＋（ ｋ －ε） λ ＋ １ ＋ ２ｋλｅ－λτ ．求解

Ｄ０（ω）＝ Ｄ３（ω）＝ ０和 Ｄ１（ω）＝ Ｄ２（ω）＝ ０ 得 ω－
０ ＝ω

－
３

＝ ０．８３，ω＋
０ ＝ω

＋
３ ＝１．２１，ω－

１ ＝ω
－
２ ＝０．９３ 和 ω＋

１ ＝ω
＋
２ ＝１．０７．

相应的临界时滞为 τ－
０，ｌ ＝ １．４６，９．０３，１６．６０，…，τ＋

０，ｌ ＝
４．２１，９．４２，１４．６４，…， τ－

１，ｌ ＝ ０．８５，７．６０，１４．３５，…，τ＋
１，ｌ ＝

５．１１，１０．９６，１６．８１，…，τ－
２，ｌ ＝ ４．２３，１０．９８，１７．７２，…，

τ＋
２，ｌ ＝２．１９，８．０４，１３．８８，…，τ－

３，ｌ ＝ ５．２５，１２．８２，２０．３９，…，
τ＋

３，ｌ ＝１．６０，６．８２，１２．０３，…，将上述临界时滞从小到大

排列为：
０＜τ－

１，０＜τ
－
０，０＜τ

＋
３，０＜τ

＋
２，０＜τ

＋
０，０＜τ

－
２，０＜τ

＋
１，０＜τ

－
３，０＜…

根据定理 １ 可知，系统的稳定区域为 τ∈（τ－
０，０，

τ＋
３，０），不稳定区域为 τ∈（０，τ－

０，０）∪（τ＋
３，０，＋∞） ．

图 ３　 ε＝ ０．０３，ｋ＝ ０．２５，α＝ ０．１ 时三振子耦合系统响应

Ｆｉｇ．３　 Ｔｈｅ ｒｅｓｐｏｎｓｅｓ ｏｆ ｔｈｒｅｅ ｃｏｕｐｌｅｄ ｏｓｃｉｌｌａｔｏｒｓ

ｗｈｅｎ ε＝ ０．０３， ｋ＝ ０．２５， ａｎｄ α＝ ０．１

图 ４（ａ）和图 ４（ｂ）分别表示，当 τ＝１．２ 和 τ＝１．５
时，完全同步周期运动和稳定的零平衡点．当 τ ＝ ２
时，出现了 Ｈｏｐｆ 分岔导致的异步周期振荡，如

图 ４（ｃ）所示． 图 ４（ｄ）表明，当 τ ＝ ２．３ 时，概周期运

动出现． 随着时滞的增大，当 τ ＝ ３．２ 时，概周期振荡

消失，出现混沌现象，如图 ４（ｅ）所示． 图 ５ 为 τ ＝ ３．２
时，系统的功率谱图和 Ｐｏｉｎｃａｒé 截面图，其中，
Ｐｏｉｎｃａｒé 截面取为∑＝｛（ｘ１ ｔ－１( ) ，ｘ１）：（ｘ２ ＝０，ｘ̇２＞０）｝．
图 ５ 表明：ｘ１ 的功率谱呈连续变化，而 Ｐｏｉｎｃａｒé 截

面上出现密集的离散点．

３　 实验研究

实验电路由 ｖａｎ ｄｅｒ Ｐｏｌ⁃Ｄｕｆｆｉｎｇ 振子电路和时

滞电路构成． 其中，ｖａｎ ｄｅｒ Ｐｏｌ⁃Ｄｕｆｆｉｎｇ 振子电路采

用积分电路、加减法运算电路以及乘法电路等构

成，而时滞则由滤波电路实现．

６６２
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图 ４　 当 ε＝ ０．０６，ｋ＝ ０．２，α＝ ０．５ 时，ｘ１－ｙ１ 平面的相图

Ｆｉｇ．４　 Ｔｈｅ ｐｈａｓｅ ｔｒａｊｅｃｔｏｒｉｅｓ ｏｎ ｔｈｅ ｘ１－ｙ１ ｐｌａｎｅ

ｗｈｅｎ ε＝ ０．０６， ｋ＝ ０．２， ａｎｄ α＝ ０．５

图 ５　 τ＝ ３．２ 时系统功率谱图和 Ｐｏｉｎｃａｒé 截面图

Ｆｉｇ．５　 Ｔｈｅ ｐｏｗｅｒ ｓｐｅｃｔｒｕｍ ａｎｄ Ｐｏｉｎｃａｒｅ ｓｅｃｔｉｏｎ ｗｈｅｎ τ＝ ３．２

图 ６ 为三振子耦合系统的电路原理图，其中，图
６Ｂ 为时滞电路，可实现时滞量为τ＝ ２ＲｄＣｄ

［１７］，其中，
Ｒ＝ ２．２ＫΩ．

如图 ６ 所示，电路方程为

Ｃ ｉａＲ ｉａ ｘ̇ｉ ＝
Ｒ ｉ１

Ｒ ｉ２
Ｙｉ

Ｃ ｉｂＲ ｉｂ Ｙ̇ｂ ＝ －
Ｒ ｉ３

Ｒ ｉ４
Ｘ ｉ－

Ｒ ｉ３

Ｒ ｉ５
Ｘ ｉ

２Ｙｉ－
Ｒ ｉ３

Ｒ ｉ６
Ｘ ｉ

３－
Ｒ ｉ３

Ｒ ｉ７
Ｙｉ＋

Ｒ ｉ３

Ｒ ｉ８
Ｙｉ＋１（ ｔ′－τ′）＋

Ｒ ｉ３

Ｒ ｉ９
Ｙｉ－１（ ｔ′－τ′）

ì

î

í

ï
ï
ï
ï

ï
ï
ï
ï

（５）

图 ６　 三振子耦合系统的电路原理图

Ｆｉｇ．６　 Ａｎ ｅｌｅｃｔｒｏｎｉｃ ｃｉｒｃｕｉｔ ｉｍｐｌｅｍｅｎｔａｔｉｏｎ

ｏｆ ｔｈｒｅｅ ｃｏｕｐｌｅｄ ｏｓｃｉｌｌａｔｏｒｓ

其中，Ｘ ｉ 和 Ｙｉ 表示第 ｉ 个振子电路中电容器的输

出电压，Ｒ ｉａ ＝Ｒ ｉｂ ＝ １０ＫΩ， Ｃ ｉａ ＝Ｃ ｉｂ ＝ １００ｎＦ， Ｒ ｉ１ ＝Ｒ ｉ２

＝Ｒ ｉ３ ＝ Ｒ ｉ４ ＝ １０ＫΩ，Ｒ ｉ５ ＝ ３３３． ３３ＫΩ，Ｒ ｉ６ ＝ １００ＫΩ，
Ｒ ｉ７ ＝ ４５．４５ＫΩ，Ｒ ｉ８ ＝Ｒ ｉ９ ＝ ４０ＫΩ，Ｒ ｉ０ ＝ ６６．６７ＫΩ，ｉ ＝ １，
２，３．电路参数与无量纲参数满足 ｔ ＝ ｔ′ ／ Ｒ１ａ Ｃ１ａ 和

τ＝τ′ ／ Ｒ１ａＣ１ａ ．
如图 ７ 所示，电路经历了同步周期振荡、零电

压、反相同步周期振荡以及零电压，其中，黑色、蓝
色和红色曲线分别表示输出电压 Ｘ１，Ｘ２ 和 Ｘ３ ．比较

图 ３ 和图 ７ 可知，实验结果与数值仿真的结果相一

致．图 ８ 为随时滞量变化实验结果与数值仿真结果

对比图．显然，两者结果吻合较好．

图 ７　 三振子耦合系统电路输出电压 Ｘｉ 曲线

Ｆｉｇ．７　 Ｔｈｅ ｏｕｔｐｕｔ ｖｏｌｔａｇｅｓ Ｘｉ ｉｎ ｔｈｅ ｅｌｅｃｔｒｏｎｉｃ ｃｉｒｃｕｉｔ

ｆｏｒ ｔｈｒｅｅ ｃｏｕｐｌｅｄ ｏｓｃｉｌｌａｔｏｒｓ

图 ９ 为六振子耦合系统的电路原理图，其电路

方程为
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图 ８　 电路实验结果与数值模拟对比图

Ｆｉｇ．８　 Ｔｈｅ ｎｕｍｅｒｉｃａｌ ａｎｄ ｅｘｐｅｒｉｍｅｎｔａｌ ｒｅｓｕｌｔｓ

ｗｈｅｎ ｔｈｅ ｃｏｕｐｌｉｎｇ ｔｉｍｅ ｄｅｌａｙ ｖａｒｉｅｓ

图 ９　 六振子耦合系统的电路原理图

Ｆｉｇ．９　 Ａｎ ｅｌｅｃｔｒｏｎｉｃ ｃｉｒｃｕｉｔ ｉｍｐｌｅｍｅｎｔａｔｉｏｎ

ｏｆ ｓｉｘ ｃｏｕｐｌｅｄ ｏｓｃｉｌｌａｔｏｒｓ

Ｃ ｉａＲ ｉａ ｘ̇ｉ ＝
Ｒ ｉ１

Ｒ ｉ２
Ｙｉ

Ｃ ｉｂＲ ｉｂ Ｙ̇ｉ ＝ －
Ｒ ｉ３

Ｒ ｉ４
Ｘ ｉ－

Ｒ ｉ３

Ｒ ｉ５
Ｘ ｉ

２Ｙｉ－
Ｒ ｉ３

Ｒ ｉ６
Ｘ ｉ

３－
Ｒ ｉ３

Ｒ ｉ７
Ｙｉ＋

Ｒ ｉ３

Ｒ ｉ８
Ｙｉ＋１（ ｔ′－τ′）＋

Ｒ ｉ３

Ｒ ｉ９
Ｙｉ－１（ ｔ′－τ′）

ì

î

í

ï
ï
ï
ï

ï
ï
ï
ï

（６）
其中，Ｘ ｉ 和 Ｙｉ 为第 ｉ 个 ｖａｎ ｄｅｒ Ｐｏｌ⁃Ｄｕｆｆｉｎｇ 振子电

路中电容器的输出电压，Ｒ ｉａ ＝Ｒ ｉｂ ＝ １０ＫΩ，Ｃ ｉａ ＝Ｃ ｉｂ ＝
１００ｎＦ，Ｒ ｉ１ ＝ Ｒ ｉ２ ＝ Ｒ ｉ３ ＝ Ｒ ｉ４ ＝ １０ＫΩ，Ｒ ｉ５ ＝ １６６．６７ＫΩ，
Ｒ ｉ６ ＝ ２０ＫΩ， Ｒ ｉ７ ＝ ７１． ４３ＫΩ， Ｒ ｉ８ ＝ Ｒ ｉ９ ＝ ５０ＫΩ，
Ｒ ｉ０ ＝ ３３．３３ＫΩ，ｉ＝ １，２，…，６．如图 １０ 所示，电路经历

了同步周期振荡，零平衡点，异步周期振荡，概周期

振荡及混沌．比较图 １０ 和图 ４ 可知，电路结果与数

值仿真结果相一致．

图 １０　 六振子耦合系统电路在 Ｘ１－Ｙ１ 平面内的相图

Ｆｉｇ．１０　 Ｔｈｅ ｐｈａｓｅ ｔｒａｊｅｃｔｏｒｉｅｓ ｏｎ ｔｈｅ Ｘ１－Ｙ１ ｐｌａｎｅ ｏｆ ｔｈｅ ｃｉｒｃｕｉｔ

ｆｏｒ ｓｉｘ ｃｏｕｐｌｅｄ ｏｓｃｉｌｌａｔｏｒｓ

４　 结论

研究了时滞耦合 ｖａｎ ｄｅｒ Ｐｏｌ⁃Ｄｕｆｆｉｎｇ 振子环的

非线性动力学．通过解耦特征方程，讨论了解耦后

特征根分布，获得了稳定条件，并在耦合强度和时

滞平面上给出了振幅死区和不稳定区域．通过数值

计算，给出了诸如同步 ／异步周期振荡、概周期振荡

以及混沌吸引子等现象．搭建了电路实验平台，实
验结果与理论分析和数值计算的结果相吻合．研究

结果表明，时滞可有效调控系统的动力学特性，如
增强或抑制同步，选择不同的振荡模式等．
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