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DYNAMICS OF A RING OF COUPLED VAN DER POL-DUFFING
OSCILLATORS WITH TIME DELAYS"®

Shi Tiantian Mao Xiaochen'
(College of Mechanics and Materials, Hohai University, Nanjing 211100, China)

Abstract The dynamic behaviors of a delay-coupled ring of van der Pol-Duffing oscillators were studied. The
stability and bifurcation of the system were determined by solving the associated characteristic equation. The para-
metrical regions of amplitude death were shown in the plane of time delay and coupling strength. Case studies
were carried out by numerical simulations, which were validated by circuit experiments. It was shown that time
delay can give rise to abundant and interesting behaviors, such as amplitude death, different periodic oscilla-

tions, quasi-periodic responses, and even chaotic attractors.

Key words time delay, van der Pol-Duffing oscillator, synchronization, amplitude death, complex dynamics
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