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THE ORETICAL AND EXPERIMENTAL RESEARCH ON ULTRASONIC
SUSPENSION AND ROTOR VIBRATION SUPPRESSION *

Yao Hongliang” Li Wenlong Wen Bangchun
(School of Mechanical Engineering & Automaiion, Northeastern University, Shenyang 110819, China)

Abstract Ultrasonic suspension technology has the function of suspension and friction reduction, which can re-
duce the friction between the rotor and the stator, and the suspension force generated by the ultrasonic wave can
be free from the suspension material. Firstly, according to the fluid dynamics, the basic equations of the ultrason-
ic extrusion film were deduced. The force of the ultrasonic extrusion film was deduced theoretically and numerical-
ly solved by the high-order difference method. The relationship between film force and suspension gap, ultrasonic
amplitude, air pressure and ultrasonic frequency was analyzed. Effects of these parameters on the ultrasonic sus-
pension performance were discussed. Then, the suspension force of the concave ultrasonic gas extrusion film was
obtained by plane extrusion film force decomposition and synthesis. The effect of rotating speed on the suspension
force of concave extrusion film was studied. The suspension force of the ultrasonic squeeze film was applied to the
unbalanced rotor system, and the vibration response of the rotor system was numerically simulated. The results of
each case were compared to explore the vibration suppression effect under different parameters. Finally, an exper-
imental platform for the ultrasonic suspension-rotor system was designed and built. The vibration responses of the
rotor system with different parameters were tested to verify the vibration suppression performance by using the ul-

trasonic suspension technology.

Key words ultrasonic suspension technology, ultrasonic extrusion film, rotating machinery, vibration sup-

pression, suspension force
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