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摘要　 超声悬浮技术可以实现悬浮和减摩功能，减少转子与静子之间的摩擦，而且由超声波产生的悬浮力

可以不受悬浮物材料的影响．首先，根据流体动力学推导出超声波挤压膜的基本方程，对其进行理论推导并

利用高阶差分方法进行仿真求解；针对气膜力与悬浮间隙、超声波振幅、气压、超声波频率因素的关系进行

了分析，讨论了不同参数对超声悬浮性能的影响规律．然后，通过平面气膜力分解与合成推导出凹面气膜力，

并研究了转速对其悬浮力的影响．将其施加在不平衡转子系统中，对转子系统的振动响应进行数值仿真，并

对各个情况下的结果进行对比，探讨出不同参数下的振动抑制效果．最后，设计了超声悬浮⁃转子系统的实验

台，通过实验测试不同参数下转子系统的振动响应，验证超声悬浮技术对于转子系统的振动抑制作用．

关键词　 超声悬浮技术，　 超声波挤压膜，　 旋转机械，　 振动抑制，　 悬浮力
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引言

目前，由于旋转机械精密性的提高，对其转子

系统振动的控制也变得越来越严格，采用传统的减

振和抑制振动方法已经不能满足对旋转机械的要

求和精度［１］ ．所以，需要研究新的技术来降低转静

子之间的不利振动，减少其造成的不必要破坏，延
长旋转机械的使用寿命．

近几年来，国内外的学者对于超声技术做了大

量的研究，主要有以下几种应用．第一种是超声辅

助，文献［１］研究了新型车削加工系统，主要利用

超声振动的方法；第二种是超声轴承，文献［２］中设

计适用于支承电机转子的超声波悬浮轴承，利用超

声技术可以减小轴承间的摩擦，从而减少转子系统

的振动问题；第三种是超声驱动［３］，文献［４］中提出

了利用压电陶瓷的逆压电效应驱动液滴运动；第四

种是超声悬浮，文献［５，６］中对超声悬浮承载能力进

行了深入研究．第五种是超声减摩，文献［７－９］中对

超声减摩的特性及应用进行了大量探究．
从超声波气体挤压膜悬浮机理的研究出发，通

过分析各个影响因素对挤压膜承载能力的影响，并
将悬浮力应用到抑制转子系统的振动问题，并通过

实验对理论研究进行验证．

１　 近场超声悬浮机理

１．１　 平面近场超声悬浮机理

１．１．１　 超声悬浮挤压膜的基本方程

适用于超声悬浮气体的非定常雷诺方程式

为［１０］：
∂
∂ｘ

ｐｈ３ ∂ｐ
∂ｘ
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è
ç

ö

ø
÷ ＋ ∂

∂ｙ
ｐｈ３ ∂ｐ

∂ｙ
æ
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ø
÷ ＝ １２μ ∂（ｐｈ）

∂ｔ
＋

　 　 ６μ ｕ１＋ｕ２( )
∂（ｐｈ）
∂ｘ

＋ ω１＋ω２( )
∂（ｐｈ）
∂ｙ

é

ë
êê

ù

û
úú （１）

式中，ｐ 为气体压强，ｈ 为悬浮间隙高度，μ 为气体

运动粘度，ｕ 和 ω 是气体在 ｘ，ｙ 轴方向的速度．
由于气膜厚度要远远小于润滑表面的尺寸，故

可以认为 ｕ１ ＝ｕ２ ＝ω１ ＝ω２≈０，故公式（１）简化为：
∂
∂ｘ
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÷ ＋ ∂

∂ｙ
ｐｈ３ ∂ｐ

∂ｙ
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ø
÷ ＝ １２μ ∂（ｐｈ）

∂ｔ
（２）

公式（２）是气体挤压膜压力分布的基本方程．
以 ｒ，θ，ｚ 为自变量，把笛卡尔坐标系转化为柱

坐标系，ｒ 为半径，θ 为角度：
ｘ＝ ｒｃｏｓθ， ｙ＝ ｒｓｉｎθ， ｚ＝ ｚ （３）

从而推出 Ｒｅｙｎｏｌｄｓ 方程为
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因为转子圆周方向上的压力相等［１１］，也就是

说，压力对角度的偏导为 ０，所以，此时方程（４）等
式左端第二项不存在，可以得到方程：

∂
∂ｒ

ｒｐｈ３ ∂ｐ
∂ｒ

æ

è
ç

ö

ø
÷ ＝ １２μｒ ∂（ｐｈ）

∂ｔ
（５）

１．１．２　 雷诺方程的数值求解

对上述公式进行无量纲化处理：ｒ ＝Ｒ􀭴ｒ，ｐ ＝ ｐ０􀭴ｐ，

ｈ＝ｈ０
􀭹ｈ，ｔ＝ω０􀭴ｔ，ω＝ω０􀭾ω，􀭹ｈ ＝ １－􀭹ａｃｏｓ􀭴ｔ，􀭹ａ≪１，Ｒ 为转子

半径；ｐ０ 为大气压力；ω０ 为超声振动频率；σ 为气

体挤压数； μ０ 为常温下气体动力粘度；ｈ０ 为初始气

体膜厚；将其展开并利用高阶差分法求解：

　 􀭴ρ􀭹ｈ３

􀭹μ
∂􀭴ρ
∂􀭴ｒ

＋􀭴ｒ
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∂􀭴ｒ

􀭴ρ􀭹ｈ３

􀭹μ
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∂􀭴ｒ

＋􀭴ｒ􀭴ρ
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􀭹μ
∂２􀭴ρ
∂􀭴ｒ２

＝σ􀭴ｒ􀭹ｈ
∂􀭴ρ
∂􀭴ｔ

＋σ􀭴ｒ􀭴ρ
∂ 􀭹ｈ( )

∂􀭴ｔ
（６）

其中，σ＝ １２μ０ω０Ｒ２ ／ ｐ０ｈ２
０( ) ．

１．１．３ 　 求解不同影响参数下气膜瞬态承载力的

结果

由以上结果图可知：振幅和频率越大，悬浮力

越大；间隙越小，悬浮力越大；在一定条件下，随着

气压的增大，超声悬浮形成的气膜力也增大．

图 １　 瞬态气膜力图

Ｆｉｇ．１　 Ｔｒａｎｓｉｅｎｔ ｇａｓ ｆｉｌｍ ｆｏｒｃｅ

１．２　 凹面超声悬浮影响因素的分析

１．２．１　 凹面超声悬浮挤压膜理论

通过参考平面挤压膜的基本方程，对其进行分

解与合成，可以研究出凹面挤压膜的基本方程．
公式（５）中 ｒ→ ＝ ｒ→ｘ ＋ ｒ→ｙ，其中， ｒ→ｘ，ｙ分别代表 ｘ，ｙ

方向椭圆半径，ｘ 方向为平行于转轴的方向，而 ｙ
方向则是垂直于转轴的方向．且 ｒ→ｙ ＝ ｒ×（π ／ α），假
设 α＝ ２π ／ ３，将挤压膜凹面展开如下图 ３．

以 ｒ，θ，ｚ 为自变量，把笛卡尔坐标系转化为柱

坐标系：
ｘ＝ ｒｃｏｓθ， ｙ＝（π ／ ３） ｒｓｉｎθ＝ １．０５ｒｓｉｎθ， ｚ＝ ｚ

从而推出 Ｒｅｙｎｏｌｄｓ 方程为
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８９１
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图 ２　 凹面悬浮模型

Ｆｉｇ．２　 Ｃｏｎｃａｖｅ ｓｕｓｐｅｎｓｉｏｎ ｍｏｄｅｌ

图 ３　 凹面展开图

Ｆｉｇ．３　 Ｃｏｎｃａｖｅ ｅｘｐａｎｄｅｄ ｄｉａｇｒａｍ

图 ４ 中表示出有限元模型下某个单元的受力

方向．

图 ４　 凹面载荷力分析图

Ｆｉｇ．４　 Ｃｏｎｃａｖｅ ｌｏａｄ ｆｏｒｃｅ ａｎａｌｙｓｉｓ ｄｉａｇｒａｍ

定义 Ｆｎ ＝Ｆａ，其中 Ｆａ 代表挤压膜悬浮力．Ｆｚ 代

表悬浮力竖直方向上的分量，ｌ 为长度，按照圆柱面

面积对 Ｆｚ 进行积分，即得沿 Ｚ 方向上所受的合力

∑Ｆ：

∑Ｆ ＝ ∬
Ｓ

Ｆｚｄｓ ＝ ∫ｌ
０
∫α

－α
Ｆａｃｏｓθｄｘｄθ （８）

通过 ∑Ｆ 求得凹面挤压膜承载能力．

１．２．２　 转速对凹面悬浮气膜力的影响

（１）普通气膜承载力与转速的关系

图 ５　 气体挤压膜示意图

Ｆｉｇ．５　 Ｇａｓ ｓｑｕｅｅｚｅ ｆｉｌｍ ｓｃｈｅｍａｔｉｃ

图 ５ 中 ｅ 为转静子重心之间的距离， ∂代表将

气膜展开的某一起始角度．为了方便计算，建立气

体动压效应承载能力方程如下：
∂
∂ｘ

（ｐｈ３ ∂ｐ
∂ｘ

）＋ ∂
∂ｚ

（ｐｈ３ ∂ｐ
∂ｚ

）＝ １２μＲω ∂（ｐｈ）
∂ｘ

（９）

式中，ｈ ＝ ｈ０（１－εｃｏｓ（ｘ ／ Ｒ－φ）） ＋ａｓｉｎｔ，ω 为转子转

动的角速度．半径 Ｒ ＝ ５ｍｍ，偏心率 ε ＝ ０．１，初始膜

厚 ｈ０ ＝ ２０μｍ，频率为 ２０ｋＨｚ，采用高阶差分法求解

转子在不同转速下瞬时气膜力，如图 ６ 所示．

图 ６　 不同转速下的气膜力

Ｆｉｇ．６　 Ｆｉｌｍ ｆｏｒｃｅ ａｔ ｄｉｆｆｅｒｅｎｔ ｓｐｅｅｄｓ

在仅考虑气体挤压膜与转速的问题时，气膜内

的压力随着转速的增大而增大．
（２）超声下混合气膜承载力与转速的关系

混合挤压膜即由普通气体挤压膜和超声悬浮

挤压膜同时作用．可知此情况下的承载能力雷诺方

程为：
∂
∂ｘ

（ｐｈ３ ∂ｐ
∂ｘ

）＋ ∂
∂ｚ

ｐｈ３ ∂ｐ
∂ｚ

æ

è
ç

ö

ø
÷

＝ １２μＲω ∂（ｐｈ）
∂ｘ

＋１２μ ∂（ｐｈ）
∂ｔ

（１０）

９９１
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其中参数含义如上所述，分别求解转子在不同转速

下的气膜力，如图 ７ 所示．

图 ７　 不同转速下的气膜力

Ｆｉｇ．７　 Ｆｉｌｍ ｆｏｒｃｅ ａｔ ｄｉｆｆｅｒｅｎｔ ｓｐｅｅｄｓ

如图可知，在转子转速比较低时，增大转速对

超声悬浮承载力影响较小， 在转轴转速达到

１００００ｒ ／ ｍｉｎ 时压力随转速变化比较大．

图 ８　 不同情况下的气膜力

Ｆｉｇ．８　 Ｆｉｌｍ ｆｏｒｃｅ ｕｎｄｅｒ ｄｉｆｆｅｒｅｎｔ ｃｏｎｄｉｔｉｏｎｓ

如图 ８ 所示，通过对比转子在不同转速时，普
通气体润滑的平均气膜力、超声悬浮平均气膜力和

二者混合时的平均气膜力的变化趋势，可以清楚看

到混合挤压膜对于转子的润滑效果会更加明显．在
仅考虑转速和二者同时考虑的情况下，承载力随着

转速增大而增大．

２　 超声悬浮抑制转子不平衡振动的分析

２．１　 不平衡转子系统动力学建模

沿轴线把转子系统划分为圆盘、轴段等单元，
轴段单元如图 ９ 所示．得出故障转子系统的动力学

方程为：
Ｍｕ̈＋Ｃｕ̇＋Ｋｕ＝Ｆｕｎｂ＋Ｆｒｕｂ （１１）

图 ９　 轴段单元有限元模型

Ｆｉｇ．９　 Ｍｏｄｅｌ ｏｆ ｆｉｎｉｔｅ ｓｈａｆｔ ｅｌｅｍｅｎｔ

其中，Ｍ 是质量矩阵，Ｃ ＝Ｄ＋ωＧ，Ｄ 是阻尼矩阵，Ｇ
是陀螺力矩矩阵，ω 是转子转速，Ｋ 是刚度矩阵，ｕ
是振动响应向量，各种矩阵的具体形式参考文献

［１２］，如下：

Ｍ＝
Ｍ１ ０

０ Ｍ２

é

ë

ê
ê

ù

û

ú
ú
　

Ｃ＝
Ｄ＋ｃ１１ ωＧ１＋ｃ１２

－ωＧ１＋ｃ２１ Ｄ＋ｃ２２

é

ë

ê
ê

ù

û

ú
ú

Ｋ＝
Ｋ１＋ｋ１１ ｋ１２

ｋ２１ Ｋ１＋ｋ２２

é

ë

ê
ê

ù

û

ú
ú
　 ｕ＝

ｕ１

ｕ２
{ }

ｕ１ ＝｛ｘ１ θｙ１ ｘ２ θｙ２ … ｘＮ θｙＮ｝ Ｔ

ｕ２ ＝｛ｙ１ －θｘ１ ｙ２ －θｘ２ … ｙＮ θｘＮ｝ Ｔ

其中，ｋ 为刚度，ｃ 为阻尼，θ 为转角，ｘ，ｙ 为不同方

向的位移．
Ｆｒｕｂ ＝ Ｔ２Ｌｒｕｂ－１ Ｐｘ＋ｊＰｙ( ) ｅｊ ωｔ－ξ( ) 是在节点 Ｌｒｕｂ处的

碰摩力向量，ｊ＝ －１ ，Ｔ２Ｌｒｕｂ－１是碰摩位置向量，向量

中的元素仅在节点 ２Ｌｒｕｂ－１ 处为 １，其余为零，Ｐｘ 和

Ｐｙ 分别是碰摩力在节点 Ｌｒｕｂ处 ｘ 和 ｙ 方向上的分

量，ξ 是碰摩力初始相位，Ｆｕｎｂ为质量偏心引起的外

激励矢量．
建立超声轴承－转子系统力学模型，并进行有

限元离散化，将转子系统分为 １７ 个轴段，１８ 个节

点，其有限元模型如图 １０ 所示．

图 １０　 有限元模型

Ｆｉｇ．１０　 Ｆｉｎｉｔｅ ｅｌｅｍｅｎｔ ｍｏｄｅｌ

００２
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２．２　 超声悬浮效应对转子系统的响应分析

２．２．１　 不同初始悬浮间隙下转子系统的响应分析

模拟空气压力为 １ 个标准大气压力，超声频率

２０ｋＨｚ，换能器半径 ５ｍｍ，超声作用于第十二个转子

节点上，转子偏心质量偏心距 ３０ｍｍ，超声振幅为

５μｍ，当不施加超声波信号时，初始悬浮间隙采用

３０μｍ，节点１４ 在不同初始间隙下的结果如图１１ 所示．
通过观察结果图可以看出，偏心转子振幅受到

超声波挤压膜力的影响后均有明显的减小．且改变

不同初始间隙对振动抑制的效果有明显的不同，随
着初始悬浮间隙的减小，气膜力增大，相应的振动

抑制效果也增强．因此，对超声波挤压膜力的合理

设置能够起到抑制转子不平衡振动，且能取得比较

好的效果，从而可以考虑利用超声悬浮挤压膜产生

的气膜力抑制转子不平衡振动引起的故障．
２．２．２　 不同气压下转子系统的响应

初始悬浮间隙定为 ２０μｍ，其他条件不变，改变

气压值，１４ 节点的结果如图 １２ 所示．

图 １１　 不同初始间隙下的时域和幅频图

Ｆｉｇ．１１　 Ｔｉｍｅ ｄｏｍａｉｎ ａｎｄ ａｍｐｌｉｔｕｄｅ ｓｐｅｃｔｒｕｍ ａｔ ｄｉｆｆｅｒｅｎｔ ｉｎｉｔｉａｌ ｇａｐｓ

图 １２　 在不同气压下的时域和幅频图

Ｆｉｇ．１２　 Ｔｉｍｅ ｄｏｍａｉｎ ａｎｄ ａｍｐｌｉｔｕｄｅ ｓｐｅｃｔｒｕｍ ａｔ ｄｉｆｆｅｒｅｎｔ ｐｒｅｓｓｕｒｅｓ
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２．２．３　 不同超声波振幅下转子系统的响应

模型气压为 １ 个标准大气压，其他参数不变，
改变超声波振幅，结果如图 １３ 所示．

图 １３　 不同超声波振幅下的时域图

Ｆｉｇ．１３　 Ｔｉｍｅ ｄｏｍａｉｎ ｏｆ ｄｉｆｆｅｒｅｎｔ ｕｌｔｒａｓｏｎｉｃ ａｍｐｌｉｔｕｄｅ

２．２．４　 不同超声波频率下转子系统的响应

超声波振幅取 ５μｍ，其他参数不变，改变超声

波频率，结果如图 １４ 所示．

图 １４　 不同超声波振幅下的时域图

Ｆｉｇ．１４　 Ｔｉｍｅ ｄｏｍａｉｎ ｄｉａｇｒａｍ ｏｆ ｄｉｆｆｅｒｅｎｔ ｕｌｔｒａｓｏｎｉｃ ａｍｐｌｉｔｕｄｅ

通过以上图可知：随着超声波频率，振幅和气

压的增大，初始间隙的减小，气膜力随之加大，对转

子的振动抑制效果也逐渐地加强．

３　 超声悬浮抑制转子振动实验

３．１　 实验设备及步骤

超声悬浮—转子实验台是由电机、质量盘、普

通轴承、轴、支撑底座、底板、高精度升降台、超声换

能器夹具和圆柱凹面超声换能器组成；电机的转速

范围为 ０～２０００ｒ ／ ｍｉｎ；转轴半径 Ｒ＝ ５ｍｍ；底板用于

固定实验台的支撑座和夹具；夹具是专门固定超声

换能器；圆柱凹面超声换能器半径 Ｒ＝ ５ｍｍ．
安装如图 １５ 所示的实验台，使圆筒形凹面超

声换能器接近旋转轴，圆柱凹面换能器与转子轴段

的间隙通过高精度升降台来控制，超声波振动的幅

值通过超声波发生器的功率比来调整，利用电涡流

式位移传感器测得转子在不同影响参数下的振动

信号．

图 １５　 实验装置图

Ｆｉｇ．１５　 Ｅｘｐｅｒｉｍｅｎｔａｌ ａｐｐａｒａｔｕｓ

３．２　 实验数据及结论

３．２．１　 不同初始悬浮间隙

主要讨论的是初始悬浮间隙对转子振动抑制

的影响，选取的转速为 ３５０ｒ ／ ｍｉｎ，其中采用的超声

波振幅是 １０μｍ（全幅超声）的单边抑制，得到结果

如图 １６ 所示．

由图 １６ 可以看出：
（１）超声悬浮产生的气膜力对不平衡转子振

动具有明显的抑制作用；
（２）随着超声悬浮初始间隙的加大，气膜力逐

渐变小，对不平衡转子振动抑制的作用也随之减

弱．
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图 １６　 不同初始间隙下的幅值变化图

Ｆｉｇ．１６　 Ａｍｐｌｉｔｕｄｅ ｃｈａｎｇｅ ｄｉａｇｒａｍ ｕｎｄｅｒ ｄｉｆｆｅｒｅｎｔ ｉｎｉｔｉａｌ ｇａｐｓ

３．２．２　 不同超声波振幅

考虑不同初始间隙下施加不同振幅的超声对

转子振幅的影响，得到结果如图 １７ 所示．

图 １７　 不同超声振幅下的幅值变化图

Ｆｉｇ．１７　 Ａｍｐｌｉｔｕｄｅ ｃｈａｎｇｅ ｄｉａｇｒａｍ ｕｎｄｅｒ ｄｉｆｆｅｒｅｎｔ ｕｌｔｒａｓｏｎｉｃ ａｍｐｌｉｔｕｄｅｓ

通过图 １７ 可以看出：随着施加的超声振幅减

小，超声换能器与转子间形成的气膜力逐渐减小，
对转子的不平衡振动的抑制效果也在减弱；通过控

制悬浮间隙和超声波振幅可以有效改善超声悬浮

气膜力抑制转子不平衡振动的效果．

４　 结论

（１） 超声波挤压膜悬浮力与初始悬浮间隙大

小成反比，与超声波频率、振幅及气压大小成正比；
（２） 在仅考虑气体挤压膜与转速的问题时，气

膜内的压力随着转速的增大而增大，且混合挤压膜

对于转子的润滑效果会更加的明显；
（３）由仿真结果可知：随着超声波频率、振幅

及气压的增大，初始间隙的减小，对转子的振动抑

制效果逐渐的加强；并在实验中对不同超声波振幅

和不同初始间隙的情况进行了验证．
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