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摘要　 现代旋转机械中转静子之间的相对转速越来越高、间隙越来越小，因此，如何有效地减少转静子接触

面间的摩擦具有重要的意义．由于超声波悬浮技术的快速发展，超声挤压轴承逐渐被应用在小型或微型的旋

转机械上．近场超声悬浮效应作为一种减少振动的方法，具有超声悬浮、超声减摩等作用．超声挤压轴承是由

压电陶瓷矩形薄片与金属铝薄壁圆筒组合而成；利用 ＡＮＳＹＳ 软件对压电换能器进行了模态分析，得到其振

型及谐振频率，由此确定压电换能器最佳工作的形状尺寸及频率．从气体润滑原理出发，推导出气体挤压膜

雷诺方程，并运用有限差分方法对其进行简化求解．通过求解分析出当给定超声波频率时，超声悬浮力与悬

浮间隙、超声波振幅等因素有关，其关系如下：超声挤压轴承的悬浮力随着悬浮间隙的增大而逐渐减小；随

着超声波振幅的增大而逐渐增大．当超声频率一定时，探究超声轴承在不同悬浮间隙和不同超声振幅条件下

对超声挤压轴承⁃转子系统的影响，对其进行动力学分析；之后又采用单一变量法进行试验研究证明其正确

性．结果表明：该轴承可以达到稳定工作的效果，在压电换能器的谐振频率下工作时效果好且更加稳定．

关键词　 稳定工作，　 小型或微型的旋转机械，　 超声挤压轴承，　 转子系统，　 谐振频率

ＤＯＩ：　 １０．６０５２ ／ １６７２⁃６５５３⁃２０１８⁃０７７

引言

为了降低转静子之间的摩擦磨损，各类新型轴

承被陆续开发设计，如磁悬浮轴承、气体静压轴承、
超声轴承等．磁悬浮轴承［１］是通过磁力的作用使转

子悬浮于空中，从而使转静子间没有接触；气体轴

承［２］是一种用气体润滑代替油膜润滑的滑动轴承，
其优点是结构简单、摩擦因数小等；超声波轴承作

为新兴的非接触式气体轴承，由于其良好的自我调

整性能，可以在高精度下稳定地运行［３］，并且具有

非常好的悬浮和减摩效果［４， ５］ ．所以，相比之下超

声轴承具有良好的发展前景［１］ ．
近 ３０ 年内，人们对其进行了大量的研究，并且

取得了很多极其重要的研究进展．目前，利用超声

悬浮技术所实现的装置有超声悬浮和输送、超声夹

持、超声气缸减阻、超声挤压膜导轨、直线轴承等．
我国对超声悬浮的研究开始于 １９９２ 年，国内研究

这方面的有清华大学，哈尔滨工业大学，吉林大学

等．其中吉林大学制作了超声波推力轴承、径向轴

承以及双向支撑悬浮轴承，并做了大量的实验测试．

与此同时，哈尔滨工业大学也提出一种能承受径向

和轴向载荷的超声悬浮轴承．经大量的实验研究证

明，在相同的条件下，利用超声悬浮原理制成的超声

波轴承比滑动轴承、滚动轴承或者可倾瓦轴承等普

通轴承更具有优势．因此该技术在轴承的领域内具

有很好的研究意义和应用前景．文献［６］表明相同条

件下超声波产生的单位近场悬浮力仅次于磁悬浮

力，而远大于气悬浮等其他方式；文献［７］提出了一

种双向驻波压电超声波驱动器；文献［８］研究了压电

传感器驱动的超声波轴颈轴承；文献［９］提出了利用

压电换能器驱动新型非接触式超声波轴承；文献

［１０］提出了利用能量法对超声电机压电振子的耦合

动力学模型进行分析．因此本文基于超声气体挤压

膜悬浮的机理，将超声挤压轴承应用在小型或微型

的转子系统上，并对该转子系统进行动力学特性分

析，最后通过试验研究证明该理论的正确性．

１　 超声挤压轴承结构

１．１　 超声挤压轴承模型

所设计的超声挤压轴承模型结构如图 １ 所示．
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图 １　 超声轴承模型

Ｆｉｇ．１　 Ｔｈｅ ｍｏｄｅｌ ｏｆ ｔｈｅ ｕｌｔｒａｓｏｎｉｃ ｂｅａｒｉｎｇ

该新型超声轴承由压电陶瓷矩形薄片与金属

铝薄壁圆筒组合而成，即六片尺寸为 １５×５×１ｍｍ
的压电陶瓷薄片分三组两两连接且互成 １２０°夹角

均布于薄壁圆筒外表面上，并可以任意调节超声轴

承在转子轴向的位置．该新型超声挤压轴承能够提

高轴与轴承之间相互作用面积、增大挤压膜效应、
提高承载力、改善轴向对中性．
１．２　 压电超声换能器的模态分析

研究的压电超声换能器是由大连交通大学的崔

爽提出的［１１］，其结构如图 ２ 所示．为了选择出最理想

的金属薄壁圆筒尺寸，对不同尺寸下金属薄壁圆筒

进行仿真．考虑到压电换能器在工作状态下的刚度

及实验室现有的实验条件，最终确定其基本尺寸为

内径 ２０ｍｍ，壁厚 ２ｍｍ，谐振频率为 ３９．３３３２ｋＨｚ；其
模态分析结果如图 ３ 所示．

图 ２　 压电换能器的结构尺寸

Ｆｉｇ．２　 Ｓｔｒｕｃｔｕｒｅ ｓｉｚｅ ｏｆ ｔｈｅ ｐｉｅｚｏｅｌｅｃｔｒｉｃ ｔｒａｎｓｄｕｃｅｒ

图 ３　 第 ２１ 阶模态

Ｆｉｇ．３　 Ｔｈｅ ２１ｓｔ ｍｏｄｅ

２　 超声挤压轴承悬浮机理研究

２．１　 气膜力基本方程的建立

为了从运动微分方程推导出气膜压力分布基

本方程，以流体力学为基础，推导出适用于超声轴

承的 Ｒｅｙｎｏｌｄｓ 方程为
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Ｒ２
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∂θ

）＋ ∂
∂ｚ

（ｐｈ３ ∂ｐ
∂ｚ

）＝ １２μ ∂（ｐｈ）
∂ｔ

（１）

对公式（１） 进行无量纲化处理： ｚ ＝ Ｒ ｚ～， ｐ ＝ ｐ０ ｐ～，

ｈ＝ｈ０ｈ
～
， ｔ～ ＝ωｔ，其中，Ｒ 为转子半径，ｐ０ 为大气压力，

ｈ０ 为初始气体膜厚，ω 为超声振动频率，μ 为当前

温度下的空气动力粘度，因此，无量纲雷诺方程为
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其中，σ 表示挤压数 σ＝ １２μωＲ２

ｐ０ｈ２
０

．

利用有限差分方法对以上方程进行离散化并

且进行 ＭＡＴＬＡＢ 编程，对方程进行求解．
２．２　 不同参数对超声轴承气膜力的影响规律

２．２．１　 不同悬浮间隙对超声轴承的影响规律

假定超声波振幅为 ａ ＝ ２μｍ，取悬浮间隙为

６８１
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ｈ＝ ３０μｍ～５５μｍ，计算结果如下：

图 ４　 不同悬浮间隙下的超声气膜力

Ｆｉｇ．４　 Ｕｌｔｒａｓｏｎｉｃ ｇａｓ ｆｉｌｍ ｆｏｒｃｅ ｕｎｄｅｒ ｄｉｆｆｅｒｅｎｔ ｌｅｖｉｔａｔｉｏｎ ｇａｐ

由图 ４ 可以看出，随着初始悬浮间隙的逐渐增

大，超声挤压轴承与转子之间的挤压膜气压逐渐减

小．
２．２．２　 不同超声波振幅对超声轴承的影响规律

假定悬浮间隙为 ｈ ＝ ５０μｍ，当超声波振幅为

ａ＝ １μｍ～６μｍ，计算结果如下：

图 ５　 不同超声波振幅下的超声气膜力

Ｆｉｇ．５　 Ｕｌｔｒａｓｏｎｉｃ ｇａｓ ｆｉｌｍ ｆｏｒｃｅ ｕｎｄｅｒ ｄｉｆｆｅｒｅｎｔ ａｍｐｌｉｔｕｄｅ

由图 ５ 可以看出，随着超声波振幅的逐渐增

大，超声挤压轴承与转子之间的挤压膜气压逐渐增

大．而且，图 ５ 中曲线的斜率明显高于图 ４ 中曲线

的斜率，因此可以推断出相对于初始悬浮间隙，超
声波振幅的大小对于超声轴承产生的挤压膜气压

的影响比较大．

３　 超声挤压轴承⁃转子系统动力学分析

３．１　 超声挤压轴承⁃转子系统动力学模型的建立

由 Ｌａｇｒａｎｇｅ 方程计算得到转子系统的动力学

方程为

Ｍｕ̈＋Ｃｕ̇＋Ｋｕ＝Ｆｕｎｂ （３）
其中，Ｍ 为质量矩阵，Ｃ ＝Ｄ＋ωＧ，Ｄ 为阻尼矩阵，Ｇ

为陀螺力矩矩阵，Ｋ 为刚度矩阵，Ｆｕｎｂ为质量偏心引

起的外激励向量，ω 为转子转速，ｕ 为振动响应向

量，ｋ 为刚度，ｃ 为阻尼，θ 为转角，ｘ，ｙ 为不同方向

的位移，矩阵的具体形式如下：
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其中，ｕ１ ＝｛ｘ１ θｙ１ ｘ２ θｙ２ … ｘＮ θｙＮ｝ Ｔ

ｕ２ ＝｛ｙ１ －θｘ１ ｙ２ －θｘ２ … ｙＮ －θｘＮ｝ Ｔ

本节建立的超声轴承⁃转子系统力学模型如图

６ 所示，转子总长度为 ３００ｍｍ，直径 １０ｍｍ，将转子

系统离散分为 ３０ 个轴段，３１ 个节点．

图 ６　 转子系统有限元模型

Ｆｉｇ．６　 Ｆｉｎｉｔｅ ｅｌｅｍｅｎｔ ｍｏｄｅｌ ｏｆ ｒｏｔｏｒ ｓｙｓｔｅｍ

３．２　 超声挤压轴承⁃转子系统的动力学响应分析

３．２．１　 不同悬浮间隙下转子系统的响应

现假设模型气压为 １ 个标准大气压，超声波振

幅为 ５μｍ，转子偏心质量的偏心距为 ３０ｍｍ，将超

声挤压轴承作用在转子系统第 ２８ 个节点上，初始

悬浮间隙分别为 ３０μｍ、４０μｍ、５０μｍ 时，当不施加

超声波信号时，初始悬浮间隙采用 ５０μｍ．转子系统

第 １０ 节点的响应曲线如图 ７ 所示．
随着悬浮间隙的增大，气膜力随之减小，对转

子的振动抑制效果也逐渐地减弱．
３．２．２　 不同超声振幅下转子系统的响应

初始悬浮间隙为 ４０μｍ，转子偏心质量的偏心

距为 ３０ｍｍ，将超声挤压轴承作用在转子系统第 ２８
个节点上，超声波振幅分别为 ５μｍ、７μｍ、１０μｍ 时，
转子系统第 １０ 节点的响应曲线如图 ８ 所示．

随着超声波振幅的增大，气膜力也随之增大，
对转子的振动抑制效果也逐渐地增强．

４　 超声挤压轴承性能的实验研究

４．１　 试验台结构

超声挤压轴承⁃转子实验台如图 ９ 所示．

７８１
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图 ７　 不同悬浮间隙下的对比图

Ｆｉｇ．７　 Ｔｈｅ ｃｏｍｐａｒｉｓｏｎ ｄｉａｇｒａｍ ｏｆ ｕｎｄｅｒ ｄｉｆｆｅｒｅｎｔ ｌｅｖｉｔａｔｉｏｎ ｇａｐ

图 ８　 不同超声振幅下的对比图

Ｆｉｇ．８　 Ｔｈｅ ｃｏｍｐａｒｉｓｏｎ ｄｉａｇｒａｍ ｏｆ ｕｎｄｅｒ ｄｉｆｆｅｒｅｎｔ ａｍｐｌｉｔｕｄｅ

图 ９　 实验装置图

Ｆｉｇ．９　 Ｅｘｐｅｒｉｍｅｎｔａｌ ａｐｐａｒａｔｕｓ

超声挤压轴承⁃转子实验台由电机、旋转轴、支
撑座、联轴器、轴承、底座支撑架、轴套、压电陶瓷、
金属薄壁圆筒、压电陶瓷电源、信号发生器组成．金
属薄壁圆筒与压电陶瓷粘贴组成压电换能器；压电

陶瓷电源为压电陶瓷提供电源产生超声作用；信号

发生器为压电陶瓷电源给定一个固定频率的交流

信号；底座支撑架用于支撑超声挤压轴承；电机的

转速范围为 ０ ～ ４０００ｒ ／ ｍｉｎ；转子半径为 Ｒ ＝ ５ ｍｍ，
转子轴向长度为 ３００ ｍｍ．

通过安装不同的金属铝薄壁圆筒来调节压电换

能器与转子之间的间隙（即初始悬浮间隙为 ３０μｍ、
４０μｍ、５０μｍ）；通过调节信号发生器的输入电压来改

变超声波振动的幅值，分别为 １０μｍ、７μｍ、５μｍ；利用

电涡流位移传感器测量转子上的振动信号．
４．２　 实验结果

４．２．１　 不同超声振幅的影响

（１）临界转速以下（２０Ｈｚ）

图 １０　 不同超声波振幅的响应图

Ｆｉｇ．１０　 Ｒｅｓｐｏｎｓｅ ｏｆ ｄｉｆｆｅｒｅｎｔ ｕｌｔｒａｓｏｎｉｃ ａｍｐｌｉｔｕｄｅｓ

８８１
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（２）临界转速附近（６０Ｈｚ）

图 １１　 不同超声波振幅的响应图

Ｆｉｇ．１１　 Ｒｅｓｐｏｎｓｅ ｏｆ ｄｉｆｆｅｒｅｎｔ ｕｌｔｒａｓｏｎｉｃ ａｍｐｌｉｔｕｄｅｓ

４．２．２　 不同悬浮间隙的影响

（１）临界转速以下（２０ Ｈｚ）

图 １２　 不同悬浮间隙的响应图

Ｆｉｇ．１２　 Ｄｉｆｆｅｒｅｎｔ ｓｕｓｐｅｎｓｉｏｎ ｇａｐ ｒｅｓｐｏｎｓｅ ｄｉａｇｒａｍ

（２） 临界转速附近（６０ Ｈｚ）

图 １３　 不同悬浮间隙的响应图

Ｆｉｇ．１３　 Ｄｉｆｆｅｒｅｎｔ ｓｕｓｐｅｎｓｉｏｎ ｇａｐ ｒｅｓｐｏｎｓｅ ｄｉａｇｒａｍ

５　 结论

（１）相对于初始悬浮间隙，超声波振幅对于超

声挤压轴承的气膜力大小的影响更为明显；
（２）随着超声悬浮初始间隙的减小或超声波

振幅的加大，气膜力逐渐变大，超声轴承的减少振

动作用也随之增强；
（３）相对于临界转速情况，转子转速处于临界

转速以下时，超声挤压轴承的振动抑制作用更明显．
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