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Fig.1 The model of the ultrasonic bearing
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Fig.2  Structure size of the piezoelectric transducer
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Fig.4 Ultrasonic gas film force under different levitation gap
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Fig.5 Ultrasonic gas film force under different amplitude
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Fig.6 Finite element model of rotor system
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DYNAMIC CHARACTERISTICS OF ULTRASONIC EXTRUSION
BEARING-ROTOR SYSTEM

Yao Hongliang" Li Wenlong Liu Shuai Wen Bangchun
(School of Mechanical Engineering & Automation, Northeastern University, Shenyang 110819, China)

Abstract Aiming to effectively reduce the friction caused by the contact between the rotor and the stator, the
ultrasonic extrusion bearing was proposed to apply in a small-scale rotor system, and the dynamic characteristics
of the bearing-rotor system were studied. The mode shape and frequency of the piezoelectric transducer’s optimal
operation were determined by using ANSYS. The Reynolds equations for gas-extrusion membranes were deduced
and solved by the finite difference method. The effects of suspension gap and ultrasonic amplitude on the dynamic
characteristics of the bearing-rotor system were studied, which were validated by experimental test. The results
show that the bearing can achieve stable operation and works better at the resonant frequency of the piezoelectric

transducer.

Key words stable operation, small or miniature rotating machinery, ultrasonic extrusion bearing, rotor

system, resonant frequency
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