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Table 1 Main parameters of DVA system
Parameters Values
Structure Mass (m; ) 1kg
DVA mass (m,) 0.1kg
Structure Stiffness (k) 100N/m
Force (F) 1000N
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Table 2
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Table 4  Variances and decrease ratios of the displacement

for the primary systems

Types of different DVAs Variances/mm? Decrease/ %
Without DVA 200.83 —
Passive DVA by Ren 26.979 86.57
On-off VBG DVA by Ren 28.153 85.98
On-off DBG DVA by Ren 23.740 88.18
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PARAMETER OPTIMIZATION AND PERFORMANCE COMPARISON
OF SEMI-ACTIVE GROUND-HOOK CONTROL DVAS”

Lang Jun Shen Yongjun' Yang Shaopu

( Department of Mechanical Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China)

Abstract Two semi-active control strategies are applied into the ground-hook Dynamic Vibration Absorber
(DVA). The performance comparison and parameters optimization of the two semi-active DVAs are completed.
Firstly, the approximate analytical solutions of two semi-active ground-hook DVAs are established by the avera-
ging method. The comparisons between the analytical and numerical solutions are carried out, which verifies the
correctness and satisfactory precision of the approximate analytical solutions. Secondly, the parameter optimization
of semi-active displacement-based on-off ground-hook control (on-off DBG) DVA is completed. The relative opti-
mal parameters are found and the optimal strategy is determined. The effects of three key parameters on the prima-
ry system are analyzed. In the end, the comparisons with two other traditional DVAs under the random excitation

show that the semi-active on-off DBG strategy is more effective.

Key words semi-active control, ground-hook dynamic vibration absorber( DVA), parameter optimization
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