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摘要　 论文研究了双叶片整体叶盘的非线性振动问题，将双旋转叶片简化为弹簧⁃旋转曲壳系统，考虑叶片

的预安装角和预扭转角的影响，利用 Ｈａｍｉｌｔｏｎ 原理建立了整体叶盘的非线性偏微分运动方程．综合运用

Ｇａｌｅｒｋｉｎ 方法和数值方法，对模型进行了非线性动力学分析，模拟不同转速和激励作用下的叶片运动，得到

波形图、相位图和功率谱密度，讨论了转速和外载荷对系统的非线性动力学特性的影响．
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引言

压气机是航空发动机的重要组成部分之一．压
气机叶片受到很大的离心惯性力和气动力作用，此
外还有气流微振引起的振动及振动应力，并存在砂

砾和叶片掉块等冲击损伤的危险．压气机叶片是直

接影响发动机性能、可靠性和寿命的关键零件．因
此，对叶片振动问题的研究具有非常重要的工程意

义．本文主要研究航空发动机压气机双旋转叶片耦

合振动的非线性动力学问题．
Ｒａｏ［１］等将涡轮叶片考虑为有固定转速的悬臂

梁，用 Ｇａｌｅｒｋｉｎ 法分别研究了带有弯扭耦合和扭转

楔形梁的固有频率．Ｃｈｒｉｓｔｅｎｓｅｎ［２］ 等建立轴扭转和

叶片弯曲变形耦合的动力学模型，基于弹性小变形

理论，采用 Ｌａｇｒａｎｇｅ 法和有限元法推导旋转叶片系

统的动力学方程，解释了叶片的振动现象．晏水

平［３］等将叶片简化为欧拉伯努利梁模型，根据梁在

恒定轴向力用下的横向振动方程，计算在不同分布

轴向力作用下悬臂梁的固有频率．Ｃｈｅｎ 和 Ｙａｏ［４］等

考虑了离心力、气动力和几何非线性等因素，根据

Ｈａｍｉｌｔｏｎ 原理和几何大变形理论，研究了存在预扭

转角和预安装角的高速旋转叶片非线性动力学响

应．Ｘｉａｏ 和 Ｃｈｅｎ［５］ 用 Ｈａｍｉｌｔｏｎ 原理建立了连接在

刚体上的矩形薄板的非线性动力学模型，从理论上

证明了刚柔耦合现象对非线性运动的影响．Ｈｕ［６］等

将叶片简化成弯曲的扭转圆柱薄板模型，利用虚功

原理、Ｒａｙｌｅｉｇｈ⁃Ｒｉｔｚ 方法分析了各参数对振动的影

响．吴根勇［７］等根据经典层合板理论，运用 Ｌａｇｒａｎｇｅ
原理和有限元法研究铺设层、铺设角和轮毂半径等

因素对旋转复合材料板非线性振动响应造成的影

响．Ｆａｒｈａｄｉ 和 Ｈａｓｈｅｍｉ［８］ 等将叶片简化成矩形旋转

板模型，利用一阶剪切理论和冯卡门大变形理论，
对叶片的颤振等动力学行为进行了研究．邓军和陈

国平［９］运用 Ｋｉｒｃｈｈｏｆｆ 假设，建立了匀速旋转薄板

在分布动载荷下的动力学控制方程，并通过数值模

拟得到了叶片振动响应．王晓峰，徐可君和秦海

勤［１０］利用有限元分析技术，研究了不同参数对叶

片模态的影响．
本文主要研究双旋转叶片整体叶盘耦合振动

的非线性动力学问题．考虑叶片的预安装角和预扭

转角的影响，利用 Ｈａｍｉｌｔｏｎ 原理建立了横向外力作

用下叶片的非线性偏微分运动方程． 综合运用

Ｇａｌｅｒｋｉｎ 方法和数值方法，研究了叶片的非线性动

力学行为．

１　 叶片非线性动力学模型

考虑第 ｓ（ ｓ ＝ １，２）个安装在半径为 ｒ０ 的刚性

轮毂上的旋转圆锥壳，该壳绕转轴旋转，其中转速

为 Ω （ ｔ） ＝ Ωｃ ＋ Ωｖｃｏｓωｒ ｔ， 如图 １ 所示． 坐标系
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（ｘ（ ｓ），θ（ ｓ），ｚ（ ｓ））位于圆锥壳的中面，任意点在 ｘ（ ｓ），
θ（ ｓ）和 ｚ（ ｓ） 方向上的位移（ ｕ（ ｓ），ｖ（ ｓ），ｗ（ ｓ） ），φｘ （ ｓ） 和

φθ（ ｓ）分别表示中面绕 θ（ ｓ）和 ｘ（ ｓ）轴的转角．圆锥壳的

几何参数分别为大端半径 ｒｒｏｏｔ（ ｓ），预安装角 β（ ｓ），沿
母线任意点半径为 Ｒ（ ｓ） ＝ ｒｒｏｏｔ（ ｓ） －ｘ（ ｓ） ｔａｎψ（ ｓ），预扭转

角 Φ（ ｓ），锥顶角为 α（ ｓ），母线长 Ｌ（ ｓ），厚度 ｈ（ ｓ） ．安装

在叶片（ｘｐ，ｙｐ）处的忽略质量弹簧 Ｋ（ ｓ） 连接第 ｓ 个
叶片和第 ｓ＋１ 个叶片，圆锥壳上表面均匀分布横向

外力 Ｆ（ ｓ）＝ Ｆ０（ ｓ） ＋Ｆ１（ ｓ） ｃｏｓωｒ ｔ，其中力 Ｆ（ ｓ） 由一个常

量和简谐量构成．

图 １　 双叶片整体叶盘模型

Ｆｉｇ．１　 Ｍｏｄｅｌ ｏｆ ｔｈｅ ｂｌａｄｅｄ ｄｉｓｋ ｗｉｔｈ ｔｗｏ ｂｌａｄｅｓ

根据一阶剪切变形理论，圆锥壳的位移场可以

写为

ｕ（ ｓ）（ｘ（ ｓ），θ（ ｓ），ｚ（ ｓ），ｔ）
＝ ｕ０（ ｓ）（ｘ（ ｓ），θ（ ｓ），ｔ）＋ｚ（ ｓ）φｘ（ ｓ）（ｘ（ ｓ），θ（ ｓ），ｔ） （１ａ）
ｖ（ ｓ）（ｘ（ ｓ），θ（ ｓ），ｚ（ ｓ），ｔ）
＝ ｖ０（ ｓ）（ｘ（ ｓ），θ（ ｓ），ｔ）＋ｚ（ ｓ）φθ（ ｓ）（ｘ（ ｓ），θ（ ｓ），ｔ） （１ｂ）
ｗ（ ｓ）（ｘ（ ｓ），θ（ ｓ），ｚ（ ｓ），ｔ）＝ ｗ０（ ｓ）（ｘ（ ｓ），θ（ ｓ），ｔ） （１ｃ）

其中，（ ｓ＝ １，２），（ｕ０（ ｓ），ｖ０（ ｓ），ｗ０（ ｓ） ）为圆锥壳中面任

意一点的位移，φｘ（ ｓ） 和 φθ（ ｓ） 分别表示中面绕 θ（ ｓ） 和

ｘ（ ｓ）轴的转角．
非线性位移⁃应变关系可写为

εｘ（ ｓ）

εθ（ ｓ）

γｘθ（ ｓ）

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

＝

ε（０）
ｘ（ ｓ）

ε（０）
θ（ ｓ）

γ（０）
ｘθ（ ｓ）

é

ë

ê
ê
ê
êê

ù

û

ú
ú
ú
úú

＋ｚ（ ｓ）

ε（１）
ｘ（ ｓ）

ε（１）
θ（ ｓ）

γ（１）
ｘθ（ ｓ）

é

ë

ê
ê
ê
êê

ù

û

ú
ú
ú
úú

（２）

其中，

ε（０）
ｘ（ ｓ）

ε（０）
θ（ ｓ）

γ（０）
ｘθ（ ｓ）

é

ë

ê
ê
ê
êê

ù

û

ú
ú
ú
úú

＝

∂ｕ０（ ｓ）

∂ｘ（ ｓ）
＋ １
２

∂ｗ０（ ｓ）

∂ｘ（ ｓ）

æ

è
ç

ö

ø
÷

２

{ １
Ｒ（ ｓ） ｃｏｓψ

∂ｖ０（ ｓ）
∂θ（ ｓ）

＋ １
Ｒ（ ｓ）

ｗ０（ ｓ） ＋

１
Ｒ（ ｓ）

ｕ０（ ｓ） ｔａｎψ＋
１
２

１
Ｒ２

（ ｓ） ｃｏｓ２ψ
∂ｗ０（ ｓ）

∂θ（ ｓ）

æ

è
ç

ö

ø
÷

２

}

{ １
Ｒ（ ｓ） ｃｏｓψ

∂ｕ０（ ｓ）

∂θ（ ｓ）
－ １
Ｒ（ ｓ）

ｖ０（ ｓ） ｔａｎψ＋

∂ｖ０（ ｓ）
∂ｘ（ ｓ）

＋ １
Ｒ（ ｓ） ｃｏｓψ

∂ｗ０（ ｓ）

∂ｘ（ ｓ）

∂ｗ０（ ｓ）

∂θ（ ｓ）
}

é

ë

ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
êê

ù

û

ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
úú

（３）

ε（１）
ｘ（ ｓ）

ε（１）
θ（ ｓ）

γ（１）
ｘθ（ ｓ）

é

ë

ê
ê
ê
êê

ù

û

ú
ú
ú
úú

＝

∂φｘ（ ｓ）

∂ｘ（ ｓ）

１
Ｒ（ ｓ） ｃｏｓψ

∂φθ（ ｓ）

∂θ（ ｓ）
＋ １
Ｒ（ ｓ）

φｘ（ ｓ） ｔａｎψ

１
Ｒ（ ｓ） ｃｏｓψ

∂φｘ（ ｓ）

∂θ（ ｓ）
－ １
Ｒ（ ｓ）

φθ（ ｓ） ｔａｎψ＋
∂φθ（ ｓ）

∂ｘ（ ｓ）

é

ë

ê
ê
ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú
ú
ú

（４）

γθｚ（ ｓ）

γｘｚ（ ｓ）

é

ë

ê
ê

ù

û

ú
ú
＝

φθ（ ｓ） ＋
１

Ｒ（ ｓ） ｃｏｓψ
∂ｗ０（ ｓ）

∂θ（ ｓ）
－ １
Ｒ（ ｓ）

ｖ０（ ｓ）

∂ｗ０（ ｓ）

∂ｘ（ ｓ）
＋φｘ（ ｓ）

é

ë

ê
ê
ê
ê
êê

ù

û

ú
ú
ú
ú
úú

（５）

壳的应力⁃应变关系可表示为
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其中，Ｑｍｎ（ｍ，ｎ＝ １，２，４，５，６）分别为
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这里，Ｅ 表示杨氏模量，ν 表示泊松比．
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根据 Ｈａｍｉｌｔｏｎ 原理，得到系统的非线性动力学

方程为：
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∂ｘ（ ｓ）
）

２

＋

ｃ２７
∂２ｗ０（ ｓ）

∂θ２
（ ｓ）

（
∂ｗ０（ ｓ）

∂ｘ（ ｓ）
）

２

＋ｃ２８
∂２ｗ０（ ｓ）

∂θ２
（ ｓ）

∂ｗ０（ ｓ）

∂θ（ ｓ）
＋

ｃ２９
∂２ｗ０（ ｓ）

∂θ２
（ ｓ）

（
∂ｗ０（ ｓ）

∂ｘ（ ｓ）
）

２

＋ｃ３０
∂２ｗ０（ ｓ）

∂θ２
（ ｓ）

（
∂ｗ０（ ｓ）

∂θ（ ｓ）
）

２

＋

ｃ３１
∂ｗ０（ ｓ）

∂ｘ（ ｓ）

∂ｗ０（ ｓ）

∂θ（ ｓ）

∂２ｗ０（ ｓ）

∂ｘ（ ｓ）∂θ（ ｓ）
＋ｃ３２

∂ｗ０（ ｓ）

∂ｘ（ ｓ）
（
∂ｗ０（ ｓ）

∂θ（ ｓ）
）

２

＋

ｃ３３（
∂ｗ０（ ｓ）

∂ｘ（ ｓ）
）

２

＋ｃ３４（
∂ｗ０（ ｓ）

∂θ（ ｓ）
）

２

＋ｃ３５ｗ０（ ｓ）

∂ｗ０（ ｓ）

∂ｘ（ ｓ）
＋

ｃ３６ｗ０（ ｓ） ＋ｃ３７
∂２φｘ（ ｓ）

∂ｘ２
（ ｓ）

∂ｗ０（ ｓ）

∂ｘ（ ｓ）
＋ｃ３８

∂２φｘ（ ｓ）

∂θ２
（ ｓ）

∂ｗ０（ ｓ）

∂ｘ（ ｓ）
＋

ｃ３９
∂２φｘ（ｓ）

∂ｘ（ｓ）∂θ（ｓ）

∂ｗ０（ｓ）

∂θ（ｓ）
＋ｃ４０

∂φｘ（ｓ）

∂ｘ（ｓ）
＋ｃ４１

∂φｘ（ｓ）

∂ｘ（ｓ）

∂ｗ０（ｓ）

∂ｘ（ｓ）
＋

ｃ４２
∂φｘ（ ｓ）

∂θ（ ｓ）

∂ｗ０（ ｓ）

∂θ（ ｓ）
＋ｃ４３φｘ（ ｓ）

∂ｗ０（ ｓ）

∂ｘ（ ｓ）
＋ｃ４４φｘ（ ｓ） ＋

ｃ４５
∂２φθ（ ｓ）

∂ｘ２
（ ｓ）

∂ｗ０（ ｓ）

∂θ（ ｓ）
＋ｃ４６

∂２φθ（ ｓ）

∂θ２
（ ｓ）

∂ｗ０（ ｓ）

∂θ（ ｓ）
＋

ｃ４７
∂２φθ（ ｓ）

∂ｘ（ ｓ）∂θ（ ｓ）

∂ｗ０（ ｓ）

∂ｘ（ ｓ）
＋ｃ４８

∂φθ（ ｓ）

∂ｘ（ ｓ）

∂ｗ０（ ｓ）

∂θ（ ｓ）
＋

ｃ４９
∂φθ（ ｓ）

∂θ（ ｓ）
＋ｃ５０

∂φθ（ ｓ）

∂θ（ ｓ）

∂ｗ０（ ｓ）

∂ｘ（ ｓ）
＋ｃ５１φθ（ ｓ）

∂ｗ０（ ｓ）

∂θ（ ｓ）

＝ ｃ５２ｗ̈０（ｓ）＋ｃ５３ｗ０（ｓ）＋ｃ５４ｕ̇０（ｓ）＋ｃ５５ｕ０（ｓ）＋ｃ５６ｖ０（ｓ）＋
ｃ５７ φ̈ｘ（ ｓ） ＋ｃ５８φｘ（ ｓ） ＋ｃ５９φθ（ ｓ） ＋ｃ６０＋Ｆ（ ｓ） －
κｗ̇０（ ｓ） －（Ｋ（ ｓ） ＋Ｋ（ ｓ－１））ｗ０（ ｓ）（ｘｐ，ｙｐ）＋
Ｋ（ ｓ）ｗ０（ ｓ＋１）（ｘｐ，ｙｐ）＋Ｋ（ ｓ－１）ｗ０（ ｓ－１）（ｘｐ，ｙｐ） （８ｃ）

ｄ１１

∂２ｕ０（ ｓ）

∂ｘ２
（ ｓ）

＋ｄ１２

∂２ｕ０（ ｓ）

∂θ２
（ ｓ）

＋ｄ１３ｕ０（ ｓ） ＋ｄ１４

∂ｖ０（ ｓ）
∂θ（ ｓ）

＋

ｄ１５

∂２ｖ０（ ｓ）
∂ｘ（ ｓ）∂θ（ ｓ）

＋ｄ１６

∂ｗ０（ ｓ）

∂ｘ（ ｓ）
＋ｄ１７ｗ０（ ｓ） ＋

ｄ１８

∂ｗ０（ ｓ）

∂ｘ（ ｓ）

∂２ｗ０（ ｓ）

∂ｘ２
（ ｓ）

＋ｄ１９

∂ｗ０（ ｓ）

∂ｘ（ ｓ）

∂２ｗ０（ ｓ）

∂θ２
（ ｓ）

＋

ｄ２０

∂ｗ０（ ｓ）

∂θ（ ｓ）

∂２ｗ０（ ｓ）

∂ｘ（ ｓ）∂θ（ ｓ）
＋ｄ２１

∂２φｘ（ ｓ）

∂ｘ２
（ ｓ）

＋ｄ２２

∂２φｘ（ ｓ）

∂θ２
（ ｓ）

＋

ｄ２３φｘ（ ｓ） ＋ｄ２４

∂φθ（ ｓ）

∂θ（ ｓ）
＋ｄ２５

∂２φθ（ ｓ）

∂ｘ（ ｓ）∂θ（ ｓ）

＝ ｄ２６ ｕ̈０（ ｓ） ＋ｄ２７ｕ０（ ｓ） ＋ｄ２８ ｖ̇０（ ｓ） ＋ｄ２９ｖ０（ ｓ） ＋
ｄ３０ｗ０（ ｓ） ＋ｄ３１ φ̈ｘ（ ｓ） ＋ｄ３２φｘ（ ｓ） ＋ｄ３３ φ̇θ（ ｓ） ＋
ｄ３４φθ（ ｓ） ＋ｄ３５ （８ｄ）

ｅ１１
∂ｕ０（ ｓ）

∂θ（ ｓ）
＋ｅ１２

∂２ｕ０（ ｓ）

∂ｘ（ ｓ）∂θ（ ｓ）
＋ｅ１３

∂２ｖ０（ ｓ）
∂ｘ２

（ ｓ）

＋ｅ１４
∂２ｖ０（ ｓ）
∂θ２

（ ｓ）

＋

ｅ１５ｖ０（ ｓ） ＋ｅ１６
∂ｗ０（ ｓ）

∂θ（ ｓ）
＋ｅ１７

∂ｗ０（ ｓ）

∂ｘ（ ｓ）

∂ｗ０（ ｓ）

∂θ（ ｓ）
＋

８３１



第 ２ 期 揭晓博等：双叶片整体叶盘的非线性振动分析

ｅ１８
∂ｗ０（ ｓ）

∂ｘ（ ｓ）

∂２ｗ０（ ｓ）

∂ｘ（ ｓ）∂θ（ ｓ）
＋ｅ１９

∂ｗ０（ ｓ）

∂θ（ ｓ）

∂２ｗ０（ ｓ）

∂ｘ２
（ ｓ）

＋

ｅ２０
∂ｗ０（ ｓ）

∂θ（ ｓ）

∂２ｗ０（ ｓ）

∂θ２
（ ｓ）

＋ｅ２１
∂φｘ（ ｓ）

∂θ（ ｓ）
＋ｅ２２

∂２φｘ（ ｓ）

∂ｘ（ ｓ）∂θ（ ｓ）
＋

ｅ２３
∂２φθ（ ｓ）

∂ｘ２
（ ｓ）

＋ｅ２４
∂２φθ（ ｓ）

∂θ２
（ ｓ）

＋ｅ２５φθ（ ｓ）

＝ ｅ２６ ｕ̇０（ ｓ） ＋ｅ２７ｕ０（ ｓ） ＋ｅ２８ ｖ̈０（ ｓ） ＋ｅ２９ｖ０（ ｓ） ＋
ｅ３０ｗ０（ ｓ） ＋ｅ３１ φ̇ｘ（ ｓ） ＋ｅ３２φｘ（ ｓ） ＋ｅ３３ φ̈θ（ ｓ） ＋
ｅ３４φθ（ ｓ） ＋ｅ３５－Ｍ（ ｓ） ＋γφ̇θ（ ｓ）

（８ｅ）
其中，Ｒ（ ｓ）＝ ｒｒｏｏｔ－ｘ（ ｓ） ｔａｎψ（ ｓ），且（ ｓ ＝ １，２），边界条件

为：
ｘ（ ｓ）＝ ０，
ｕ０（ ｓ）＝ ｖ０（ ｓ）＝ ｗ０（ ｓ）＝ φｘ（ ｓ）＝ φθ（ ｓ）＝ ０ （９ａ）
ｘ（ ｓ）＝ Ｌ，
Ｎｘｘ（ ｓ）＝ Ｎθθ（ ｓ）＝ Ｎｘθ（ ｓ）＝ Ｍｘｘ（ ｓ）＝ Ｍθθ（ ｓ）＝ Ｍｘθ（ ｓ）

＝ Ｑｘ（ ｓ）＝ Ｑθ（ ｓ）＝ ０ （９ｂ）

θ（ ｓ）＝ －π
２
和

π
２
，

Ｎｘｘ（ ｓ）＝ Ｎθθ（ ｓ）＝ Ｎｘθ（ ｓ）＝ Ｍｘｘ（ ｓ）＝ Ｍθθ（ ｓ）＝ Ｍｘθ（ ｓ）

＝ Ｑｘ（ ｓ）＝ Ｑθ（ ｓ）＝ ０ （９ｃ）
其中，（ ｓ＝ １，２） ．

２　 Ｇａｌｅｒｋｉｎ 离散

对方程（８）进行无量纲化，然后应用 Ｇａｌｅｒｋｉｎ
方法将偏微分形式的非线性方程离散为常微分形

式的非线性动力学方程． 本文主要研究外界激励对

系统振动的影响，选取了系统前两阶振动模态进行

二阶 Ｇａｌｅｒｋｉｎ 离散，在满足位移边界条件的情况下

选取振型函数为［１１］：
ｕ０（ ｓ）（ｘ（ ｓ），θ（ ｓ），ｔ）

＝ ｕ１（ ｓ）（ ｔ）ｃｏｓ（
π
Ｌ（ ｓ）

ｘ（ ｓ））ｃｏｓ（３θ（ ｓ） －３ｘ（ ｓ））＋

ｕ２（ ｓ）（ ｔ）ｃｏｓ（
３π
Ｌ（ ｓ）

ｘ（ ｓ））ｃｏｓ（θ（ ｓ） －ｘ（ ｓ））

（１０ａ）
ｖ０（ ｓ）（ｘ（ ｓ），θ（ ｓ），ｔ）

＝ ｖ１（ ｓ）（ ｔ）ｓｉｎ（
π
Ｌ（ ｓ）

ｘ（ ｓ））ｓｉｎ（３θ（ ｓ） －３ｘ（ ｓ））＋

ｖ２（ ｓ）（ ｔ）ｓｉｎ（
３π
Ｌ（ ｓ）

ｘ（ ｓ））ｓｉｎ（θ（ ｓ） －ｘ（ ｓ））

（１０ｂ）

ｗ０（ ｓ）（ｘ（ ｓ），θ（ ｓ），ｔ）

＝ ｗ１（ ｓ）（ ｔ）ｓｉｎ（
π
Ｌ（ ｓ）

ｘ（ ｓ））ｃｏｓ（３θ（ ｓ） －３ｘ（ ｓ））＋

ｗ２（ ｓ）（ ｔ）ｓｉｎ（
３π
Ｌ（ ｓ）

ｘ（ ｓ））ｃｏｓ（θ（ ｓ） －ｘ（ ｓ）） （１０ｃ）

φｘ（ ｓ）（ｘ（ ｓ），θ（ ｓ），ｔ）

＝ φｘ１（ ｓ）（ ｔ）ｃｏｓ（
π
Ｌ（ ｓ）

ｘ（ ｓ））ｃｏｓ（３θ（ ｓ） －３ｘ（ ｓ））＋

φｘ２（ ｓ）（ ｔ）ｃｏｓ（
３π
Ｌ（ ｓ）

ｘ（ ｓ））ｃｏｓ（θ（ ｓ） －ｘ（ ｓ）） （１０ｄ）

φθ（ ｓ）（ｘ（ ｓ），θ（ ｓ），ｔ）

＝ φθ１（ ｓ）（ ｔ）ｓｉｎ（
π
Ｌ（ ｓ）

ｘ（ ｓ））ｓｉｎ（３θ（ ｓ） －３ｘ（ ｓ））＋

φθ２（ ｓ）（ ｔ）ｓｉｎ（
３π
Ｌ（ ｓ）

ｘ（ ｓ））ｓｉｎ（θ（ ｓ） －ｘ（ ｓ）） （１０ｅ）

其中，（ ｓ＝ １，２） ．
利用 Ｇａｌｅｒｋｉｎ 法进行离散，得到常微分方程：
ｗ̈１（ ｓ） ＋μ１（ ｓ） ｗ̇１（ ｓ） ＋ω２

１（ ｓ）ｗ１（ ｓ） ＋

α１（ ｓ）Ωｖ ｃｏｓωｒ ｔｗ１（ ｓ） ＋α２（ ｓ）Ωｖ
２ （ｃｏｓωｒ ｔ） ２ｗ１（ ｓ） ＋

α３（ ｓ）ｗ２
１（ ｓ） ＋α４（ ｓ）ｗ２

２（ ｓ） ＋α５（ ｓ）ｗ１（ ｓ）ｗ２（ ｓ） ＋

α６（ ｓ）ｗ２
１（ ｓ）ｗ２（ ｓ） ＋α７（ ｓ）ｗ３

１（ ｓ） ＋α８（ ｓ）ｗ３
２（ ｓ） ＋α９（ ｓ） ＋

α１０（ ｓ）Ωｖ ｓｉｎωｒ ｔ＋α１１（ ｓ）Ωｖ ｃｏｓωｒ ｔ＋

α１２（ ｓ）Ω２
ｖ ｃｏｓ２ωｒ ｔ＋α１３（ ｓ）ｗ１（ ｓ） ＋α１４（ ｓ）ｗ１（ ｓ＋１） ＋

α１５（ ｓ）ｗ１（ ｓ－１）＝ α１６（ ｓ）Ｆ１（ ｓ） ｃｏｓωｒ ｔ （１１ａ）

ｗ̈２（ ｓ） ＋μ２（ ｓ） ｗ̇２（ ｓ） ＋ω２
２（ ｓ）ｗ２（ ｓ） ＋

β１（ ｓ）Ωｖ ｃｏｓωｒ ｔｗ２（ ｓ） ＋β２（ ｓ）Ωｖ
２ （ｃｏｓωｒ ｔ） ２ｗ２（ ｓ） ＋

β３（ ｓ）ｗ２
１（ ｓ） ＋β４（ ｓ）ｗ２

２（ ｓ） ＋β５（ ｓ）ｗ１（ ｓ）ｗ２（ ｓ） ＋

β６（ ｓ）ｗ２
１（ ｓ）ｗ２（ ｓ） ＋β７（ ｓ）ｗ３

１（ ｓ） ＋β８（ ｓ）ｗ３
２（ ｓ） ＋

β９（ ｓ） ＋β１０（ ｓ）Ωｖ ｓｉｎωｒ ｔ＋β１１（ ｓ）Ωｖ ｃｏｓωｒ ｔ＋

β１２（ ｓ）Ω２
ｖ ｃｏｓ２ωｒ ｔ＋β１３（ ｓ）ｗ２（ ｓ） ＋β１４（ ｓ）ｗ２（ ｓ＋１） ＋

β１５（ ｓ）ｗ２（ ｓ－１）＝ β１６（ ｓ）Ｆ１（ ｓ） ｃｏｓωｒ ｔ （１１ｂ）
其中（ ｓ＝ １，２） ．

３　 算例分析

考虑具有如下几何参数和材料属性的旋转圆

锥壳 Ｌ（ ｓ） ＝ ０．１５ｍ，ｒｒｏｏｔ（ ｓ） ＝ ０．１ｍ，ψ（ ｓ） ＝
π
６
，ν ＝ ０．３３，

Ｅ＝ １０２．０４ＧＰａ， ｈ０（ ｓ） ＝ ０． ０１ｍ，ωｒ ＝ １５０， α（ ｓ） ＝
π
３
，

β（ｓ）＝
π
６
，ρ ＝ ４４５０ｋｇ ／ ｍ３，κ ＝ ３００Ｎｓ ／ ｍ，Ｆ０（ｓ） ＝ １．５×１０６

Ｎ ／ ｍ２，Ωｃ ＝ ２５００ｒ ／ ｍｉｎ，γ ＝ ３００Ｎｓ ／ ｍ．分析系统的周
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期运动，通过 Ｒｕｎｇｅ⁃Ｋｕｔｔａ 法，得到时间历程图、相
位图和功率谱密度．
３．１　 扰动转速对叶片非线性动力学现象的影响

为了研究扰动转速对系统非线性动力学特性

的影响，以 Ωｖ 为控制参数，研究其对系统非线性动

力学响应的影响．
选定参数 Ωｖ ＝ ０．３７，画出 １ 号叶片的波形图进

行研究．图 ２（ａ）（ｂ）（ｃ）（ｄ）（ｅ）分别是 １ 号叶片的

（ ｔ， ｗ１（１） ）、 （ ｔ， ｗ２（１） ） 平 面 上 的 波 形 图，
（ｗ１（１），ｗ̇１（１））、（ｗ２（１）， ｗ̇２（１） ）平面上的相位图和功

率谱密度．

图 ２　 １ 号叶片振动

Ｆｉｇ．２　 Ｖｉｂｒａｔｉｏｎ ｏｆ Ｎｏ．１ ｂｌａｄｅ

选定参数 Ωｖ ＝ ０．４１，画出 １ 号叶片的波形图进

行研究．图 ３（ａ）（ｂ）（ｃ）（ｄ）（ｅ）分别是 １ 号叶片的

（ ｔ， ｗ１（１） ）、 （ ｔ， ｗ２（１） ） 平 面 上 的 波 形 图，
（ｗ１（１），ｗ̇１（１））、（ｗ２（１）， ｗ̇２（１） ）平面上的相位图和功

率谱密度．
通过分析，可以看出扰动速度对圆锥壳的影

响．首先可以观察到悬臂圆锥壳存在稳态振动．其
次，当圆锥壳的转速增加的时候，如图 ２ 和图 ３ 可

以看到，伴随旋转速度的增加，ｗ１ 和 ｗ２ 的幅值有

减小的趋势，该现象可解释为叶片在旋转过程中结

构的刚度增加．

３．２　 扰动力对叶片非线性动力学现象的影响

为了研究扰动力对系统非线性动力学特性的

影响，以 Ｆ１（１）和 Ｆ１（２）为控制参数，研究其对系统非

线性动力学响应的影响．
选定参数 Ｆ１（１）＝ ０．３１，画出系统的波形图进行

研究．图 ４（ａ） （ ｂ） （ ｃ） （ ｄ） （ ｅ）分别是 １ 号叶片的

（ ｔ，ｗ１（１））、（ ｔ，ｗ２（１）） 平 面 上 的 波 形 图，
（ｗ１（１），ｗ̇１（１））、（ｗ２（１），ｗ̇２（１））平面上的相位图和功

率谱密度．

图 ３　 １ 号叶片振动

Ｆｉｇ．３　 Ｖｉｂｒａｔｉｏｎ ｏｆ Ｎｏ．１ ｂｌａｄｅ

图 ４ （ ｆ） （ ｇ） （ ｈ） （ ｉ） （ ｊ） 分别是 ２ 号叶片的

（ｔ，ｗ１（２））、（ｔ，ｗ２（２））平面上的波形图，（ｗ１（２），ｗ̇１（２） ）、
（ｗ２（２），ｗ̇２（２））平面上的相位图和功率谱密度．

选定参数 Ｆ１（２）＝ ０．８，画出系统的波形图进行研

究．图 ５ （ ａ） （ ｂ） （ ｃ） （ ｄ） （ ｅ） 分别是 １ 号叶片的

（ｔ，ｗ１（１））、（ ｔ，ｗ２（１） ）平面上的波形图，（ｗ１（１），ｗ̇１（１） ）、
（ｗ２（１），ｗ̇２（１））平面上的相位图和功率谱密度．

图 ５ （ ｆ） （ ｇ） （ ｈ） （ ｉ） （ ｊ） 分别是 ２ 号叶片的

（ｔ，ｗ１（２））、（ｔ，ｗ２（２））平面上的波形图，（ｗ１（２），ｗ̇１（２） ）、
（ｗ２（２），ｗ̇２（２））平面上的相位图和功率谱密度．

旋转悬臂圆锥壳上的横向外力增加后，ｗ１ 和

ｗ２ 的幅值增大；对于耦合振动系统，在不同叶片上

加载不同的外力，对振动幅值有较大影响．
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第 ２ 期 揭晓博等：双叶片整体叶盘的非线性振动分析

图 ４　 叶片振动

Ｆｉｇ．４　 Ｖｉｂｒａｔｉｏｎ ｏｆ ｔｈｅ ｂｌａｄｅｓ

４　 结　 论

本文提供了一个分析模型，用来研究变转速条

件下双叶片整体叶盘的非线性动力学响应．从理论

分析和数值结果可以得到下列结论：
（１）转速对整体叶盘叶片的振动幅值有影响，

伴随旋转速度的增加，振动幅值减小，这个现象可

解释为叶片在旋转过程中结构刚度增加；
（２）横向外力对整体叶盘叶片的振动有影响，

伴随力的增大，振幅也增大；
（３）横向外力对整体叶盘的振动是一个重要

的参数．对于耦合振动系统，在不同叶片上加载不

同的外力，对振动幅值有较大影响．

图 ５　 叶片振动

Ｆｉｇ．５　 Ｖｉｂｒａｔｉｏｎ ｏｆ ｔｈｅ ｂｌａｄｅｓ
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