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摘要　 以寡头市场中两家具有有限理性且以产量竞争的异质企业为背景，建立了一个离散时间的非线性动

态古诺双寡头模型．讨论了模型的边界均衡点和 Ｃｏｕｒｎｏｔ⁃Ｎａｓｈ 均衡点的存在性和稳定性，给出了 Ｃｏｕｒｎｏｔ⁃

Ｎａｓｈ 均衡点的稳定区域．通过数值模拟，利用单参数分岔图分析了随着参数的变化，系统的复杂动力学行为

的变化情况．得出调整速度太大会导致 Ｃｏｕｒｎｏｔ⁃Ｎａｓｈ 均衡点失去稳定性，系统将产生混沌吸引子等复杂的动

力学现象．此外初值极小的变化将导致系统产生巨大的波动．同时企业成本函数的差异性也会使得系统产生

不同的分岔．

关键词　 Ｃｏｕｒｎｏｔ 模型，　 企业异质性，　 混沌，　 分岔

ＤＯＩ：　 １０．６０５２ ／ １６７２⁃６５５３⁃２０１８⁃０３７

引言

随着非线性科学和混沌理论的迅速发展，越来

越多的学者致力于将非线性动力学及混沌理论应

用到经济领域中．应用博弈理论建立离散时间非线

性模型，分析其分岔，混沌吸引子等复杂动力学行

为来解释各种经济学现象，对了解和掌控经济发展

规律和本质，以及在经济活动中采取合理的经济决

策具有指导性意义．由于在不同环境中需要采取不

一样的决策准则，所以一般基于不同假设建立博弈

模型来分析经济现象．在没有完全获得市场和竞争

对手的信息时，通常采取有限理性原则，它是目前

使用最为广泛的决策准则［１－４］ ．文献［５］使用弹性

需求和线性成本函数，基于有限理性建立双寡头模

型分析异质成本函数和行为决策对 Ｃｏｕｒｎｏｔ⁃Ｎａｓｈ
平衡的影响．文献［６］基于有限理性的假设，建立了

一个不同理性，不同结构成本函数的双寡头模型，
分析了寡头理性的变化对博弈结果的影响．文献

［７］基于不同理性建立了一个双寡头博弈模型，讨
论了它的复杂性．文献［８］研究了一个基于不同决

策的三寡头模型．在大量关于异质企业的动态双寡

头的文献中，竞争对手的生产和组织结构角色可能

的异质性在一定程度上仍处于阴影之中．例如，只

有少数研究明确地考虑了企业成本函数的差异对

模型的动态特性的影响，并从财务角度分析其对企

业生存的影响．然而，这种差异确实可能起到重要

作用，并有助于丰富可能的动态场景的范围．本文

将通过建立和分析一个比较简单的模型来对上述

问题进行讨论，但是它同时包含了“行为”的异质

性（即不同的产出决策方法）和生产成本差异的可

能性．为了进行这样的分析，我们假设在每个离散

周期的竞争中，两家具有有限理性的企业根据对竞

争者下一时期的产出预测来实施不同的生产决策．
在所选产出不能为负值的自然要求下，迫使动力系

统的映射是分段光滑的．本研究主要通过分析分岔

和混沌吸引子，改变梯度调整参数，来确定可变成

本的固定结构．

１　 模型建立

假设市场中有两家寡头企业，两家企业生产同

质产品并以产量竞争．并令 ｘ≥０ 表示企业 １ 的产

量供应，ｙ≥０ 表示企业 ２ 的产量供应．考虑到总供

给为 ｑ＝ ｘ＋ｙ，ｐ（ｑ）为产品的市场价格，其中 ｐ（ ．）是
逆需求函数，一般假设 ｐ（ ．）是减函数．两家企业的

利润函数由

π１（ｘ，ｙ）＝ ｘｐ（ｑ）－Ｃ１（ｘ）
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和

π２（ｘ，ｙ）＝ ｙｐ（ｑ）－Ｃ２（ｙ）
表示，其中 Ｃ１（ｘ）和 Ｃ２（ｙ）分别表示两家企业的总

成本函数．
假定两家企业都是根据对竞争者产出的预测，

预先采取生产决策．用 ｘｅ，ｙｅ 分别表示对企业 １ 和

企业 ２ 将来产出的预测．若考虑两家企业都是追求

利润最大化，则根据两家企业的利润函数，可求出

使得各自企业利润最大化的产量分别为

ｘ＝Ｒ１（ｙｅ）：＝ａｒｇ ｍａｘ π１（ｕ，ｙｅ）
ｕ≥０

（１）

ｙ＝Ｒ１（ｘｅ）：＝ａｒｇ ｍａｘ π２（ｘｅ，ｖ）
ｖ≥０

（２）

其中，Ｒ１（ｙｅ）和 Ｒ２（ｘｅ）分别是企业 １ 和企业 ２ 的最

佳回应或反应函数．
在这个模型中，我们考虑一个线性逆需求函数

ｐ（ｑ）＝ ａ－ｂ（ｘ＋ｙ），其中，ａ，ｂ≥０．假设成本函数是二

次的，即 Ｃ１（ｘ）＝ ｃ１ｘ２，Ｃ２（ｙ）＝ ｃ２ｙ２，其中，ｃ１，ｃ２ ＞０，
分别是与各企业技术水平成反比的系数．通过上述

假设，可得两家企业的利润函数分别为

π１（ｘ，ｙ）＝ （ａ－ｂ（ｘ＋ｙ））ｘ－ｃ１ｘ２ （３）

π２（ｘ，ｙ）＝ （ａ－ｂ（ｘ＋ｙ））ｙ－ｃ１ｙ２ （４）
那么，方程（１）和（２）即可分别表示为

Ｒ１（ｙｅ）＝

ａ－ｂｙｅ

２（ｂ＋ｃ１）
０≤ｙｅ≤ ａ

ｂ

０ ｙｅ＞ ａ
ｂ

ì

î

í

ï
ïï

ï
ïï

（５）

Ｒ２（ｘｅ）＝

ａ－ｂｘｅ

２（ｂ＋ｃ２）
０≤ｘｅ≤ ａ

ｂ

０ ｘｅ＞ ａ
ｂ

ì

î

í

ï
ïï

ï
ïï

（６）

进一步，用 ｘｔ 和 ｙｔ 表示两家企业在 ｔ 时期的

产量，而 ｙｅ
ｔ＋１，ｘｅ

ｔ＋１分别表示企业 １ 和企业 ２ 对竞争

者下一个时期产出的预测．我们假设两家企业的行

为决策和他们的成本函数一样都是异质的．对于两

家企业来说，均假设简单预期，即 ｘｔ＋１
ｅ ＝ ｘｔ，ｙｔ＋１

ｅ ＝ ｙｔ ．
然而，与上面讨论的参考案例不同，这两家企业有

不同的产出决策．企业 １ 采用最佳回应决策（５），则
其在 ｔ＋１ 时期的产量如下

ｘｔ＋１ ＝Ｒ２（ｘｔ）＝ ｍａｘ ０，
ａ－ｂｙｔ

２（ｂ＋ｃ１）{ } （７）

而企业 ２ 根据梯度调整规则决定其在下一个时期

的产量，即

ｙｔ＋１ ＝ ｙｔ＋ｋｙ
∂π２（ｘ，ｙ）

∂ｙ
（８）

其中，调整速度参数 ｋ＞０，企业根据当前时期的边

际利润情况，进行下一时期的决策．如果当期的边

际利润为正，则企业在下一时期将提高产出；如果

当前的边际利润为负，则企业在下一时期将降低产

出．
正如前面提到的，这两种策略都依赖于两家企

业都对竞争者下一时期的产出有简单预期，即竞争

者不会改变它当前时期的产出水平．然而当企业 １
完全切换到新的赢利最大化产出模式时，企业 ２ 只

是增加或减少其产出的比例．因此重复的双寡头博

弈可以形式化为一个二维非线性离散差分方程．考
虑到产量不能为负，映射 Ｍ：Ｒ２→Ｒ２ 确定系统的映

射如下

Ｍ：
ｘｔ＋１ ＝ｍａｘ ０，

ａ－ｂｙｔ

２（ｂ＋ｃ１）{ }
ｙｔ＋１ ＝ｍａｘ ０，ｙｔ＋ｋｙｔ（ａ－ｂｘｔ）－２ｋｙｔ

２（ｂ＋ｃ２）{

ì

î

í

ï
ï

ïï

（９）
即动力系统（９）的初始条件满足

Ｆ＝ （ｘ，ｙ）： ｘ≥０，ｙ≥０，ｘ＋ｙ≠０{ }

２　 稳定性分析

在系统（９）中，令 ｘｔ＋１ ＝ ｘｔ ＝ ｘ∗，ｙｔ＋１ ＝ ｙｔ ＝ ｙ∗，可

得到如下代数方程

ｘ－ ａ－ｂｙ
２（ｂ＋ｃ１）

＝ ０

ｋｙ（ａ－ｂｘ）－２ｋｙ２（ｂ＋ｃ２）＝ ０

ì

î

í

ï
ï

ïï

（１０）

从而得到系统（９）有两个平衡点

Ｅ０ ＝
ａ

２（ｂ＋ｃ１）
，０æ

è
ç

ö

ø
÷

　 Ｅ∗ ＝
ａ（ｂ＋２ｃ２）

３ｂ２＋４ｃ１ｂ＋４ｃ２ｂ＋４ｃ１ｃ２
，

ａ（ｂ＋２ｃ１）
３ｂ２＋４ｃ１ｂ＋４ｃ２ｂ＋４ｃ１ｃ２

æ

è
ç

ö

ø
÷

其中，平衡点 Ｅ０ 是一个边界平衡点，是一个垄断均

衡解，显然 Ｅ∗是惟一的 Ｃｏｕｒｎｏｔ⁃Ｎａｓｈ 均衡点．由稳

定性理论，平衡点的局部稳定性可通过系统的

Ｊａｃｏｂｉ矩阵的特征值得到，计算系统（９）在任意一

点的 Ｊａｃｏｂｉ 矩阵为

Ｊ（ｘ，ｙ）＝
０

－ｂ
２ｂ＋２ｃ１

－ｋｙｂ １＋ｋ（ａ－ｂｘ）－４ｋ（ｂ＋ｃ２）ｙ

æ

è

ç
ç
ç

ö

ø

÷
÷
÷
．

１５
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利用该 Ｊａｃｏｂｉ 矩阵讨论系统（９）平衡点得稳定性，
可得到如下结论：

定理 １　 平衡点 Ｅ０ 是系统（９）的鞍点．
证明：系统在 Ｅ０ 点的 Ｊａｃｏｂｉ 矩阵为

Ｊ（Ｅ０） ＝
０ － ｂ

２ｂ＋２ｃ１

０ １＋ｋａ－ ｋａｂ
２（ｂ＋ｃ１）

æ

è

ç
ç
ç
ç

ö

ø

÷
÷
÷
÷

，它的特征值为

λ１ ＝ ０，λ２ ＝ １＋ｋａ １－ ｂ
２（ｂ＋ｃ１）

æ

è
ç

ö

ø
÷ ．因为参数 ａ，ｂ，ｋ，ｃ１

均为正数，则 λ１ ＜１， λ２ ＞１，所以 Ｅ０ 是系统（９）
的不稳定的平衡点（鞍点） ．

由于系统在 Ｅ∗处的 Ｊａｃｏｂｉ 矩阵为

　 Ｊ（Ｅ∗）＝
０

－ｂ
２ｂ＋２ｃ１

ａ（ｂ＋２ｃ１）
３ｂ２＋４ｃ１ｂ＋４ｃ２ｂ＋４ｃ１ｃ２

１＋ｋ（ａ－ Ｂ
Ａ
） － Ｃ

Ａ

æ

è

ç
ç
ç
çç

ö

ø

÷
÷
÷
÷÷

其中，
Ａ＝ ３ｂ２＋４ｃ１ｂ＋４ｃ２ｂ＋４ｃ１ｃ２
Ｂ＝ａｂ（ｂ＋２ｃ２）
Ｃ＝ ４ｋａ（ｂ＋２ｃ１）（ｂ＋ｃ２） ．

ｔｒＪ 和 ｄｅｔＪ 分别是 Ｊ（Ｅ∗）的迹和行列式，且可表示

为

ｔｒＪ＝ １＋ｋ ａ－ Ｂ
Ａ

æ

è
ç

ö

ø
÷ － Ｃ

Ａ

ｄｅｔＪ＝
－ｋａｂ２（ｂ＋２ｃ１）

（３ｂ２＋４ｃ１ｂ＋４ｃ２ｂ＋４ｃ１ｃ２）（２ｂ＋２ｃ１）
．

由 Ｊｕｒｙ 条件，Ｃｏｕｒｎｏｔ⁃Ｎａｓｈ 均衡点的稳定区域为，
Ｄ－Ｅ

２Ａ（ｂ＋ｃ１）
＞０

ｋａ（ｂ＋２ｃ１）
ｂ＋ｃ１

＞０

－
ｋａｂ３＋２ｋａｂ２ｃ１＋６ｂ３＋１４ｂ２ｃ１＋８ｃ１２ｂ＋１６ｃ２ｂｃ１＋８ｃ１２ｃ２

２Ａ（ｂ＋ｃ１）
＜０

ì

î

í

ï
ï
ï
ï

ï
ï
ï
ï

（１１）
其中，

Ｄ＝ １２ｂ３＋２８ｂ２ｃ１＋１６ｃ１ ２ｂ＋１６ｃ２ｂ２＋

３２ｃ２ｂｃ１＋１６ｃ１ ２ｃ２
Ｅ＝ ５ｋａｂ３＋１４ｋａｂ２ｃ１＋８ｋａｃ１ ２ｂ＋４ｋａｃ２ｂ２＋

１２ｋａｃ２ｂｃ１＋８ｋａｃ１ ２ｃ２
在（１１）中，由于参数 ａ，ｂ，ｋ，ｃ１，ｃ２＞０，第二个和第三

个式子恒成立，从而（１１）式可等价地表示为

４（ｂ＋ｃ１）－ｋａ（２ｃ１＋ｂ）＞０ （１２）
通过数值模拟，Ｃｏｕｒｎｏｔ⁃Ｎａｓｈ 均衡点 Ｅ∗ 的稳

定域是由（１２）式的曲线和 ｋ，ｃ１ 的正半轴围成的区

域（图 １ 深色部分） ．Ｅ∗在这个区域是稳定的，当穿

过稳定区域的 ｆｌｉｐ 分岔曲线时，系统发生 ｆｌｉｐ 分岔，
在 ｆｌｉｐ 曲线的交叉处附近出现一个稳定的 ２ 周期

轨道，稳定的平衡点变成鞍点．

图 １　 Ｃｏｕｒｎｏｔ⁃Ｎａｓｈ 均衡点 Ｅ∗在参数平面（ｃ１，ｋ）的

局部渐进稳定区域

Ｆｉｇ．１　 Ｒｅｇｉｏｎ ｏｆ ｌｏｃａｌ ａｓｙｍｐｔｏｔｉｃ ｓｔａｂｉｌｉｔｙ ｏｆ ｔｈｅ Ｃｏｕｒｎｏｔ⁃Ｎａｓｈ

ｓｔｅａｄｙ ｓｔａｔｅ ｉｎ ｔｈｅ ｐａｒａｍｅｔｅｒ （ｃ１，ｋ）

３　 数值模拟

上面对系统的 Ｎａｓｈ 均衡点进行了分析，接下

来将在参数空间，通过数值模拟来分析系统的动力

学行为，以及对初始条件的敏感性．我们希望企业 ２
的调整速度 ｋ 具有一个稳定变化的趋势．对始于稳

定参数空间区域的值，随着调整速度的增加，会失

去稳定性．而且对于有限理性的异质双寡头模型，
成本函数系数的相关值会产生不同的分岔．基于这

些条件，为研究平衡点的局部稳定性，固定其它参

数值 ａ＝ １１，ｂ＝ ０．２，ｃ２ ＝ １．我们研究系统在参数空间

（ｃ１，ｋ）的动力学行为．
图 ２（ａ）是在参数 ａ，ｂ，ｃ２ 固定，ｃ１ ＝ ５ 时系统随

企业 ２ 的调整速度 ｋ 变化的分岔图．图 ２（ｂ）是与图

２（ａ）对应的最大李雅普洛夫指数图，从图中可以

看出调整速度 ｋ 在小于 ０．２４ 时系统是稳定的，随
着 ｋ 值的增加系统逐渐通往混沌．从图 ２（ａ）中可以

看出随着 ｋ 值的增加，系统在通往混沌的过程中会

出现周期间隙．也可以观察到，当调整参数进一步

增加时，新的吸引子在局部分岔产生后变得越来越

复杂．

２５
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图 ２　 ｃ１ ＝ ５ 时两家企业产量随参数 ｋ 的变化

Ｆｉｇ．２　 Ｖａｒｉａｔｉｏｎ ｏｆ ｔｈｅ ｏｕｔｐｕｔ ｌｅｖｅｌｓ ｏｆ ｂｏｔｈ ｆｉｒｍｓ ｗｈｅｎ ｃ１ ＝ ５

图 ３ 是企业 １ 随 ｋ 值变化的分岔图，在图 １ 中

我们可以看到当调整速度接近 ０．２ 时，系统会发生

ｆｌｉｐ 分岔．从图 ３ 中可以看出，企业 １ 随参数 ｋ 变化

的单参图，在接近 ０．２ 时也发生了 ｆｌｉｐ 分岔．此时

Ｃｏｕｒｎｏｔ⁃Ｎａｓｈ 均衡点 Ｅ∗ 失去稳定性，形成了一个

围绕着 Ｅ∗的 ２ 周期环．随着调整速度 ｋ 的不断增

加，２ 周期环经过 ｆｌｉｐ 分岔产生了一个 ４ 周期环．直
至调整速度 ｋ 接近 ０．２５ 时，ｆｌｉｐ 分岔序列结束，系
统进入混沌状态．

图 ３　 对应图 ２ 中企业 １ 产量随参数 ｋ 变化的分岔图的放大

Ｆｉｇ．３　 Ａｍｐｌｉｆｉｃａｔｉｏｎ ｏｆ ｔｈｅ ｂｉｆｕｒｃａｔｉｏｎ ｄｉａｇｒａｍ ｗｉｔｈ ｔｈｅ ｃｈａｎｇｅ ｏｆ

ｔｈｅ ｐａｒａｍｅｔｅｒ ｋ ｆｏｒ ｔｈｅ ｏｕｔｐｕｔ ｌｅｖｅｌｓ ｏｆ Ｆｉｒｍ １ ｉｎ Ｆｉｇ．２

图 ４ 是在图 ３ 所对应的参数下，取调整速度

ｋ＝ ０．２５ 时系统的混沌吸引子．可以验证系统此时

已经结束了 ｆｌｉｐ 分岔序列进入混沌状态．也就是寡

头市场中企业的调整速度参数越大，即对市场的反

应越快，系统越容易打破稳定状态而陷入混沌状

态，寡头竞争市场也越容易陷入无序状态．这种情

况下企业无法对将来做出准确的预测．
图 ５ 是固定参数 ａ ＝ ２２，ｂ ＝ ３，ｃ１ ＝ ５，通过增加

参数 ｃ２ 的值，得到产量关于调整速度 ｋ 的分岔图．
可以看到图 ５（ａ）是 ｃ２ ＝ ４ 时的分岔图，此时 ｃ１ 大

于 ｃ２，企业 １ 的分岔图在企业 ２ 的下方，随着 ｃ２ 的

进一步增加，两家分岔图先是有重合部分，再到

图 ５（ｃ）中企业 １ 在企业 ２ 的上方．但不管怎样增加

ｃ２，这些分岔图的形状基本不变．直到图 ５（ｄ）中两

家企业的分岔图都是从 １ 周期到 ２ 周期再到 ４ 周

期，没有出现混沌，此时市场处于周期运转状态．

图 ４　 当 ｃ１ ＝ ５，ｋ＝ ０．２５ 时，系统的混沌吸引子

Ｆｉｇ．４　 Ｃｈａｏｔｉｃ ａｔｔｒａｃｔｏｒ ｏｆ ｔｈｅ ｓｙｓｔｅｍ ｗｈｅｎ ｃ１ ＝ ５ ａｎｄ ｋ＝ ０．２５

图 ５　 系统随 ｋ 变化的全局分岔图，

其中，ｃ１ ＝ ５，ｃ２ 分别为 １、５、６ 及 ８

Ｆｉｇ．５　 Ｇｌｏｂａｌ ｂｉｆｕｒｃａｔｉｏｎ ｄｉａｇｒａｍｓ ｗｉｔｈ ｄｉｆｆｅｒｅｎｔ ｋ ｗｈｅｎ

ｃ１ ＝ ５ ａｎｄ ｃ２ ＝ １，５，６，８， ｒｅｓｐｅｃｔｉｖｅｌｙ

从图 ６ 可以看出系统对初值具有敏感依赖性．
图 ６（ａ）是初值（ｘ０，ｙ０）＝ （５，５）时企业 ２ 的产量随

时间变化的图；图 ６（ｂ）是初值（ｘ０，ｙ０）＝ （５，５．００１）
时企业 ２ 的产量随时间变化的图．显然当初值有微

小变动时，产量随时间有剧烈的波动，将来的产量

对当前时期产量的变化具有极强的敏感性．当企业

处于这种状态的市场中时，决策者很难对未来市场

的变化做出准确判断，这意味着市场具有极为有限
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的可预测性．

图 ６　 在不同初值下 ｙ 产量随时间变化图

Ｆｉｇ．６　 Ｔｉｍｅ ｐａｔｈｓ ｏｆ ｏｕｔｐｕｔ ｙ ｗｉｔｈ ｄｉｆｆｅｒｅｎｔ ｉｎｉｔｉａｌ ｖａｌｕｅｓ

通过以上分析可以看出，对于具有有限理性的

两家企业的博弈，Ｎａｓｈ 均衡不仅会受到不同决策

的影响，还会受到它们成本函数差异性的影响．在
图 １Ｎａｓｈ 均衡关于参数 ｋ，ｃ１ 的稳定域中，当企业 ２
的调整速度 ｋ 和企业 １ 的成本函数的系数 ｃ１ 选取

在稳定域中时，双方博弈的结果最终会趋向 Ｎａｓｈ
均衡；但如果穿过临界曲线就会发生 ｆｌｉｐ 分岔，
Ｎａｓｈ 均衡点就会变得不稳定，系统会出现混沌等

现象．只要混沌发生，那么博弈双方的微小变动都

会引起强烈反应，市场也就变得不可预测，这对博

弈双方都是不利的．

４　 结论

本文分析了一个动态的古诺双寡头模型，两家

具有有限理性的企业，都对竞争者下一时期的产出

有简单预期，根据不同的行为决策决定自身的产

出．其中一个企业通过采用最佳回应决策，把使得

当前利润达到最大的产出作为下一时期的产出，而
另一个企业则是根据梯度调整，通过其边际利润函

数的符号来决定下一时期产出的变化．系统具有线

性逆需求函数和二次成本函数．在给定的成本参数

下，把企业 ２ 的调整参数视为分岔参数来研究系统

的局部动力学．通过增加该调整参数，分析系统在

唯一的 Ｃｏｕｒｎｏｔ⁃Ｎａｓｈ 平衡点周围的动态行为演变，
在一般情况下，系统朝向不稳定或内生周期性运动

状态演变．然而，这类局部分岔是否出现在平衡点，
以及从这种分岔中产生的长期动力学行为都受到

两家企业成本函数异质性的影响．足够相似的单位

可变成本与一个 ｆｌｉｐ 分岔场景是相容的．调整速度

的变化除了产生不稳定的平衡点，还可能会导致出

现混沌吸引子等更复杂的动力学现象．这些复杂现

象与该系统的分段光滑性质直接相关．
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