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CONDITION OF COMMON NOISE INDUCED SYNCHRONIZATION
IN DISCRETE CHAOTIC NETWORK SYSTEMS "

Liu Tian Yang Xiaoli'
(College of Mathematics and Information Science, Shaanxi Normal University, Xi'an 710062, China)

Abstract Noise is ubiquitous in the various real and artificial systems, which plays multiple effects on synchro-
nization of nonlinear systems. This study proposes to explore the positive influence of external common noise on
the synchronous behavior of high dimensional discrete complex network. A network model of two uncoupled dis-
crete chaotic networks with identical parameters under the excitation of external common noise is firstly construc-
ted. By using the Birkhoff traversal theorem and the matrix theory, some sufficient conditions for synchronization
of two discrete chaotic network systems are then proved. Meanwhile, by employing a specific chaotic network
model , numerical simulation is used to verify the effectiveness of the theoretical analysis. The numerical results il-
lustrate that when the parameters of network model meet the sufficient conditions for common noise induced syn-
chronization, the two discrete chaotic networks can achieve synchronization in random sense. Moreover, the syn-
chronization is robust against the variation of complex network topology. This paper obtains the theoretical condi-
tions for common noise induced synchronization in the discrete chaotic networks for the first time, which not only
can enrich the research of noise induced synchronization in some extent, but also can help to understand the posi-

tive effect of noise on ordered dynamics in high-dimensional nonlinear chaotic systems.

Key words discrete networks, noise, network synchronization
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