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Fig.1 Ilustration of a folding aircraft
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RESEARCH ON MORPHING-AIDED MANEUVER OF FOLDING-WING
AIRCRAFT BASED ON SLIDING MODE CONTROL "

Xue Chen Xu Liang Lv Rongrong Lu Yuping He Zhen®
( Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China)

Abstract Based on the sliding mode control strategy, the morphing-aided maneuver problem of the folding-wing
aircraft is studied. The relationship between the aircraft folding angle and the aerodynamic parameters is analyzed.
The wing folding angle is viewed as an extra control input and the dynamic model of the morphing-aided maneuver
is constructed. For the nonlinearity and the hybrid disturbances of the system, a novel feedback linearization-
based non-singular dynamic terminal sliding mode control ( NDTSMC) approach is proposed. NDTSMC can re-
strain the uncertainty of the folding-wing aircraft and complete the attitude tracking control. Simulation results
show that the control precision and the robustness of the morphing aircraft are improved by NDTSMC, with a bet-
ter chattering elimination. It is also shown that the folding-wing aircraft with morphing-aided maneuver has higher

maneuverability and disturbance rejection capability when compared to the traditional aircraft.

Key words folding aircraft, morphing-aided maneuver, non-singular dynamic terminal sliding mode control

(NDTSMC), trajectory tracking
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