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Fig.1  Vibro-impact model
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STATIONARY RESPONSES OF A SINGLE-DEGREE-OF-FREEDOM
VIBRO-IMPACT SYSTEM WITH TWO-SIDED ASYMMETRIC BARRIER

IN THE PRESENCE OF WIDE-BAND NOISE "

Wang Jianlong Leng Xiaolei’ Liu XianBin
( Nanjing University of Aeronautics and Astronautics, State Key Laboratory of Mechanics and Conirol of Mechanical Structures ,

Nanjing 210016, China)

Abstract In this paper, the stationary responses of a single-degree-of-freedom inelastic vibro-impact system with
two-sided asymmetric barrier in the presence of wide-band noise are studied. The generalized Hertz contact model
is applied to simplify the impact restoring force of the vibro-impact system. The averaged Ito stochastic differential
equation of the system under wide-band random excitation was obtained through the stochastic averaging method,
based on the generalized harmonic functions. After solving the stationary FPK equation corresponding to the sto-
chastic differential equation, the stationary probability densities of amplitude, total energy, displacement and the
joint probability density of velocity, and displacement of the system are gained immediately. In addition, the sto-
chastic responses of the system are approximated as Markov processes, and the generalized cell mapping method
is applied to derive the approximate stationary responses. It demonstrates that the results obtained by the stochas-
tic averaging method and the generalized cell mapping method are in a great agreement with those from Monte

Carlo simulation.

Key words vibro-impact system, generalized Hertz contact model, stochastic averaging method, stationary

PDF, general cell mapping method
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