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摘要　 本文以一类单自由度双边非对称碰撞振动系统为研究对象，采用广义 Ｈｅｒｔｚ 接触模型表示碰撞过程，

考察系统在宽带随机激励下的稳态响应． 应用基于广义谐和函数的随机平均法推导出系统在宽带随机外激

励下的伊藤随机微分方程，通过求解相应的稳态 ＦＰＫ 方程，得到系统关于幅值、能量和位移的稳态概率密度

以及位移与速度的联合稳态概率密度． 另外，将系统的随机响应近似为马尔可夫过程，利用广义胞映射法得到

系统的近似稳态响应． 最后通过与蒙特卡罗模拟结果的对比，验证了随机平均法和广义胞映射法的有效性．
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引言

由于生产误差或者制造需要，机械装置各部件

间普遍存在间隙，这些间隙将导致零部件之间产生

碰撞振动． 汽车、飞机、火箭、高速列车等机械系统

在运行过程中会受到各种不确定载荷的作用而发

生碰撞振动，对系统的动力学特性、可靠性和寿命

产生重要的影响． 因此研究碰撞振动系统在随机载

荷下的响应，具有重要的工程实际意义．
半个世纪以来，国内外学者对碰撞振动进行了

广泛的研究．目前，国内外关于该领域的研究主要

集中在用现代分析方法研究在确定性激励作用下

碰撞系统的响应和稳定性．谢建华［１，２］，丁旺才［３，４］

等基于 Ｐｏｉｎｃａｒé 映射研究了确定性载荷作用下的

碰撞振动系统的对称性，分岔及混沌．对于随机载

荷下的碰撞振动系统的响应的研究还相对较少．
Ｄｉｍｅｎｔｂｅｒｇ［５］用随机平均法研究了高斯白噪声激励

下单自由度碰撞振动系统的随机响应． 黄志龙［６］

等发展了适用于强非线性系统的随机平均法，研究

了宽带随机激励下单自由度碰撞振动系统的随机

响应．吴禹［７］通过摄动法求解泊松白噪声激励下多

自由度碰撞振动系统的 ＦＰＫ 方程，得到系统的近

似平稳响应．以上几位学者所用的碰撞模型主要是

弹性碰撞模型，对于刚性碰撞模型，杨贵东［８］ 等基

于等效非线性系统方法和突变理论，分析了随机参

激下 Ｄｕｆｆｉｎｇ⁃Ｒａｙｌｅｉｇｈ 碰撞振动系统的 Ｐ⁃分岔．李
超［９］通过非光滑变换把原系统化为新的系统，应用

能量包线随机平均法分析了相关高斯白噪声激励

下的 Ｄｕｆｆｉｎｇ⁃Ｖａｎ ｄｅｒ Ｐｏｌ 碰撞振子的稳态响应，并
分析了不同参数下发生的随机分岔．迄今，对于采

用弹性阻尼碰撞模型双边非对称约束的碰撞振动

系统随机响应，目前可见的文献还鲜有报道．
本文采用广义 Ｈｅｒｔｚ 接触碰撞模型，基于广义

谐和函数的随机平均法研究了在宽带随机外激励

下双边非对称约束的单自由度碰撞振动系统的稳

态响应．此外，将广义胞映射法应用到此类碰撞振

动系统，得到系统的近似稳态响应．最后用蒙特卡

罗模拟验证上述两种方法的有效性．

１　 动力学模型

将含间隙的复杂碰撞振动系统简化为如图 １
所示的动力学模型．简化为由刚度系数为 ｋ 的线性

弹簧和阻尼系数为 ｃ 的黏性阻尼器连接而成的集

中质量块 ｍ，在宽带随机激励 ｆ 的作用下发生振动．
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图 １　 碰撞振动模型

Ｆｉｇ．１　 Ｖｉｂｒｏ⁃ｉｍｐａｃｔ ｍｏｄｅｌ

当振动的位移 ｘ 大于间隙 ｂ２ 或小于间隙－ｂ１

时，质量块分别与左右两侧的挡板发生碰撞．假设

碰撞满足 Ｈｅｒｔｚ 接触条件，碰撞作用力用广义 Ｈｅｒｔｚ
接触力用 Ｆ 来表示．因此系统的运动微分方程可以

表示为：

ｘ̈＋２ζωｎ ｘ̇＋ωｎ
２ｘ＝ １

ｍ
Ｆ＋ １

ｍ
ｆ（ ｔ） （１）

式中 ω２
ｎ ＝ ｋ ／ ｍ，ζ＝ ｃ ／ ２ωｎｍ．

广义 Ｈｅｒｔｚ 接触力具有如下的形式［１０］：

Ｆ＝ ｋｃε
３
２ ＋Ｄｃ ε̇ （２）

式中：ε 为两个质体沿接触面法向相对压入变形

量；ε̇ 为相对压入速度；Ｄｃ 为阻尼系数，Ｄｃ ＝λε３ ／ ２；λ
为滞后阻尼系数；ｋｃ 为弹性力学中的 Ｈｅｒｔｚ 刚度系

数，它取决于材料的特性和曲率半径，可表示为：

ｋｃ ＝
４

３π（σ１＋σ２
）

ｒ１ｒ２
ｒ１＋ｒ２

１
２æ

è
ç

ö

ø
÷ ，σｉ ＝

１－νｉ

πＥ ｉ
， ｉ＝ １，２

（３）
式中：Ｅ ｉ 和 νｉ 分别是两个质体的弹性模量和泊松

比．
根据实验数据并结合解析分析得到恢复系数

的具体表达式 ｅ ＝ １－∑∞
ｉ＝１αｉｖｉ０（对于碳钢和青铜材

料，系数 α１ ＝ ０．０８～０．３２ｓ ／ ｍ，一般取一阶近似）， 再

根据碰撞过程中的能量守恒确定滞后阻尼系数的

表达式：

λ＝ ３
２
α１ｋｃ （４）

因而将广义 Ｈｅｒｔｚ 接触力（２）写成：

Ｆ＝ ｋｃε３ ／ ２（１＋ ３
２
α１ ε̇） （５）

考虑图 １ 所示的碰撞振子，广义 Ｈｅｒｔｚ 接触力

具体表达式为：

Ｆ＝

－ｋｃ（ｘ－ｂ２） ３ ／ ２（１＋ ３
２
α１ ｘ̇） ｘ＞ｂ２

０ －ｂ１＜ｘ＜ｂ２

－ｋｃ（ｘ＋ｂ１） ３ ／ ２（１＋ ３
２
α１ ｘ̇） ｘ＜－ｂ１

ì

î

í

ï
ï
ï

ï
ï
ï

（６）

由于广义 Ｈｅｒｔｚ 接触力同时包含阻尼与弹性效

应，因而将碰撞接触力等效分解为阻尼力和恢复力

两部分，并分别与碰撞振子的线性阻尼力与弹性恢

复力合并，将系统运动微分方程（１）改写为：

ｘ̈＋ｇ（ｘ）＝ ｈ（ｘ，ｘ̇＋
１
ｍ
ｆ（ ｔ） （７）

式中：

ｇ（ｘ）＝

ω２ｘ＋
ｋｃ

ｍ
ｘ－ｂ２

３
２ ｘ＞ｂ２

ω２ｘ －ｂ１≤ｘ≤ｂ２

ω２ｘ－
ｋｃ

ｍ
ｘ＋ｂ１

３
２ ｘ＜－ｂ１

ì

î

í

ï
ï
ïï

ï
ï
ï

（８）

为系统的恢复力，

　 ｈ（ｘ，ｘ̇）＝

－２ζωｘ̇－
３
２
ｋｃα１ ｘ̇
ｍ

ｘ－ｂ２

３
２ ｘ＞ｂ２

－２ζωｘ̇ －ｂ１≤ｘ≤ｂ２

－２ζωｘ̇＋
３
２
ｋｃα１ ｘ̇
ｍ

ｘ＋ｂ１

３
２ ｘ＜－ｂ１

ì

î

í

ï
ï
ïï

ï
ï
ï

（９）
为系统的阻尼力．

２　 平均法求解系统稳态响应的概率密度

方程（７）所表示的是一个强非线性系统，当系

统的阻尼与随机激励的强度较小时，系统的运动是

近似周期的，因而引入广义谐和变换：
ｘ＝ＡｃｏｓΦ＋Ｂ
ｘ̇＝ －Ａｖ（Ａ，Φ）ｓｉｎΦ{ （１０）

其中：
Φ（ ｔ）＝ ψ（ ｔ）＋θ（ ｔ）

ｖ（Ａ，Φ）＝ ｄψ
ｄｔ

＝ ２［Ｖ（Ａ＋Ｂ）－Ｖ（ＡｃｏｓΦ＋Ｂ）］
Ａ２ｓｉｎ２Φ

Ｖ（ｘ） ＝ ∫ｘ
０
ｇ（ｕ）ｄｕ （１１）

式中 Ａ，Ｂ，Φ，ψ，θ，ｖ 均为随机过程，Ｖ 为系统的势

能，ｖ 为系统的瞬时频率，且 Ａ，Ｂ 的关系可由 Ｖ（Ａ＋
Ｂ）＝ Ｖ（－Ａ＋Ｂ） ＝ Ｈ 确定，其中 Ｈ 为系统的首次积

分，记 Ｈ＝ ｘ̇２ ／ ２＋Ｖ（ｘ） ．

９３３
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将（１０）式代入到（７）式可得：
ｄＡ
ｄｔ

＝ｍ１＋σ１ ｆ（ ｔ）

ｄθ
ｄｔ

＝ｍ２＋σ２ ｆ（ ｔ）

ì

î

í

ï
ïï

ï
ï

（１２）

式中：

ｍ１ ＝ － Ａν（Ａ，Φ）ｓｉｎΦ
ｇ（Ａ＋Ｂ）（１＋􀭹ｈ）

ｈ（Ａ，Φ）

σ１ ＝ － Ａν（Ａ，Φ）ｓｉｎΦ
ｍ·ｇ（Ａ＋Ｂ）（１＋􀭹ｈ）

ｍ２ ＝ －ν（Ａ，Φ）·（ｃｏｓΦ＋􀭹ｈ）
ｇ（Ａ＋Ｂ）（１＋􀭹ｈ）

ｈ（Ａ，Φ）

σ２ ＝ －ν（Ａ，Φ）·（ｃｏｓΦ＋􀭹ｈ）
ｍ·ｇ（Ａ＋Ｂ）·（１＋􀭹ｈ）

􀭹ｈ＝ｄＢ
ｄＡ

＝ｇ（－Ａ＋Ｂ）＋ｇ（Ａ＋Ｂ）
ｇ（－Ａ＋Ｂ）－ｇ（Ａ＋Ｂ）

ì

î

í

ï
ï
ï
ï
ï
ï
ïï

ï
ï
ï
ï
ï
ï
ïï

（１３）
根据 Ｓｔｒａｔｏｎｏｖｉｃｈ⁃Ｋｈａｓｍｉｎｓｋｉｉ 极限定理［１１］，Ａ

和 θ 弱收敛于二维扩散过程，可用如下伊藤随机微

分方程描述：
ｄＡ＝􀭾ｍ１ｄｔ＋􀭾σ１ｒｄＢｒ（ ｔ）

ｄθ＝􀭾ｍ２ｄｔ＋􀭾σ２ｒｄＢｒ（ ｔ）
{
　 ｒ＝ １，２

（１４）

其中重复下标表示求和，Ｂｒ（ ｔ）表示相互独立的单

位维纳过程，漂移系数和扩散系数为：

􀭾ｍｉ ＝ｍｉ＋ ∫
０

－∞

∂σｉ

∂Ａ ｔσ１ ｔ＋τ＋
∂σｉ

∂θ ｔ
σ２ ｔ＋τ

æ

è
ç

ö

ø
÷Ｒ ｆ（τ）ｄτ

􀭴ｂｉｊ ＝􀭾σｉｒ􀭾σ ｊｒ ＝ ∫
∞

－∞

（σｉ ｔσ ｊ ｔ＋τ）Ｒ ｆ（τ）ｄτ

ì

î

í

ï
ïï

ï
ïï

　 ｉ，ｊ，ｒ＝ １，２
（１５）

而 Ｒ ｆ 是随机外激励的自相关函数．
式（１５）求漂移与扩散系数的过程就是随机平

均．所有的漂移与扩散系数都是关于 Φ 的周期函数

，周期 ＴΦ 为 ２π．相对于 Ａ 与 θ，漂移与扩散系数是

快变量，因而对 􀭾ｍｉ 与 􀭴ｂｉｊ进行确定性平均，得到关于

慢变量 Ａ 与 θ 的伊藤随机微分方程：
ｄＡ＝ｍ１ｄｔ＋σ１ｒｄＢｒ（ ｔ）

ｄθ＝ｍ２ｄｔ＋σ２ｒｄＢｒ（ ｔ）
{
　 ｒ＝ １，２

（１６）

式中：

ｍｉ ＝
１
２π
∫２π

０
􀭾ｍｉ（Ａ，Φ）ｄΦ

σｉｋσｉｋ ＝ ｂｉｉ ＝
１
２π ∫

２π

０
􀭾σｉｋ（Ａ，Φ）􀭾σｉｋ（Ａ，Φ）ｄΦ

σｉｋσ ｊｋ ＝ ｂｉｊ ＝ ０（ ｉ≠ｊ）

ì

î

í

ï
ï
ïï

ï
ï
ï

　 ｉ，ｊ＝ １，２
（１７）

在实际计算时，可将 ｖ、ｍｉ、σｉ 关于 Φ 展开成傅

里叶级数，取其前几项代入式（１５），并完成确定性

平均，得到伊藤微分方程的漂移与扩散系数的具体

表达式．
由方程（１６）中第一式不依赖于 θ 可以看出，幅

值 Ａ 本身就是一个齐次的扩散过程，其转移概率密

度 ｐ（Ａ，ｔ ｜Ａ０）由如下 ＦＰＫ 方程控制：

∂ｐ
∂ｔ

＝ － ∂
∂Ａ

ｍ１（Ａ）ｐ[ ] ＋ １
２

∂２

∂Ａ２ ｂ－１１（Ａ）ｐ[ ] （１８）

其初始条件为 ｐ（Ａ，ｔ ｜Ａ０）＝ δ（Ａ－Ａ０），ｔ＝ ０．
由方程（１８）可得幅值 Ａ 的稳态概率密度为：

ｐ（Ａ）＝ Ｃ
ｂ１１

ｅｘｐ ∫Ａ
０

２ｍ１（ｘ）

ｂ１１（ｘ）
ｄｘ

é

ë

ê
ê

ù

û

ú
ú

（１９）

式中 Ｃ 为归一化常数．系统总能量 Ｈ 的稳态概率密

度为：

ｐ（Ｈ）＝ ｐ（Ａ）
ｄＨ ／ ｄＡ Ａ＝Ｖ－１（Ｈ）

（２０）

这里的 Ａ＝Ｖ－１（Ｈ 是 Ｈ＝Ｖ（Ａ＋Ｂ（Ａ））的反函数．
系统的位移与速度的联合稳态概率密度为：

ｐ（ｘ，ｘ̇）＝
ｐ（Ｈ）

Ｔ（Ａ（Ｈ）） Ｈ＝ １
２ ｘ̇

２＋Ｖ（ｘ）
（２１）

系统位移稳态概率密度为：

ｐ（ｘ） ＝ ∫
∞

－∞

ｐ（ｘ，ｘ̇ｄｘ̇） （２２）

３　 广义胞映射法

考虑到系统所受的激励为宽带噪声，根据文献

［１１］，如果激励的相关时间足够小，系统的响应将

是近似的马尔科夫过程，此时可以应用广义胞映射

法高效地计算响应的稳态概率密度．在计算广义胞

映射一步转移概率密度矩阵时，我们选取的一步转

移时间要远大于系统激励的相关时间，这样系统每

一步的响应增量可看成是近似独立的，即满足马尔

可夫假设．

０４３
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在算例中，广义胞映射计算系统稳态概率密度

的实际步骤如下：首先，选择感兴趣的如下区域 Ｚ
＝｛－０．４＜ｘ＜０．４，－０．４＜ｙ＜０．４｝，将区域 Ｚ 分割为 ８０
×８０ 个小胞，然后，在每个小胞中均匀地选取 ５×５
个样本点，每个样本点产生积分时长为 ５ｓ 的 １０００
个样本轨道，利用这些样本统计出系统的一步转移

概率矩阵 Ｐ．最后利用概率演化方程［１２］：
ｐ（ｎ）＝ Ｐ·ｐ（ｎ－１）＝ Ｐｎ·ｐ（０）

经过多次迭代得到系统的稳态响应．

４　 算例

在图 １ 所示系统中，考虑系统所受随机外激励

ｆ（ ｔ）的功率谱如下：

Ｓ（ω）＝ Ｄ
π

１
（ω２－ω２

１） ２＋４ζ２
１ω２ω２

１

（２３）

其中 ζ１，ω１，Ｄ 为常数，该噪声可由噪声强度为 ２Ｄ
的白噪声经过一个二阶滤波器生成，噪声的带宽取

决于参数 ζ１，ω１ ．
选取系统参数： ｍ＝ １，ζ＝ ０．１，ωｎ ＝ １，ｋｃ ＝ ８０，α１

＝ ０．１，ｂ１ ＝ ０．２，ｂ２ ＝ ０．１，ζ１ ＝ ０．６，ω１ ＝ ６，Ｄ＝ １．２．

分别按照随机平均法和广义胞映射法计算系

统幅值、总能量、位移的稳态概率密度及位移和速

度的联合稳态概率密度．图 ２（ａ）、（ｂ）、（ｃ）分别给

出了上述参数下系统幅值、总能量和位移稳态概率

密度，—线表示平均法的结果，•线表示胞映射结

果，×表示蒙特卡罗模拟结果．图 ３ 给出了系统位移

和速度的联合稳态概率密度．从图 ２ 可以看出随机

平均法的结果与蒙特卡罗模拟的结果吻合的很好，
证实了上述推导的随机平均法的有效性．此外可以

看出，随着广义胞映射法的一步转移时间的增长，
广义胞映射法所得结果的精确性得到很大的提高，
说明对于宽带激励下的系统，应用适当的广义胞映

射法也可以得到足够精确的稳态解．
取另一组噪声参数 ζ１ ＝ ０．３，ω１ ＝ ５，计算系统在

不同噪声强度 Ｄ＝ ０．４、０．８、１．２ 下幅值的稳态概率

密度．从图 ４（ａ）可以看到随着噪声强度的增强，系
统的非线性效应增强，幅值的稳态概率密度发生较

大的变化，概率分布总体向右移．当噪声强度为 Ｄ＝
０．４ 时，幅值概率分布主要集中在 ０ 到 ０．１ 之间，系
统的振子主要在平衡位置附近来回震荡，不与两侧

图 ２　 幅值、总能量及位移的稳态概率密度

Ｆｉｇ．２　 Ｓｔａｔｉｏｎａｒｙ ｐｒｏｂａｂｉｌｉｔｙ ｄｅｎｓｉｔｉｅｓ ｏｆ ａｍｐｌｉｔｕｄｅ， ｔｏｔａｌ ｅｎｅｒｇｙ， ｄｉｓｐｌａｃｅｍｅｎｔ

图 ３　 位移与速度的联合稳态概率密度

Ｆｉｇ．３　 Ｊｏｉｎｔ ｐｒｏｂａｂｉｌｉｔｙ ｄｅｎｓｉｔｙ ｏｆ ｖｅｌｏｃｉｔｙ ａｎｄ ｄｉｓｐｌａｃｅｍｅｎｔ
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图 ４　 幅值、总能量及位移的稳态概率密度

Ｆｉｇ．４　 Ｓｔａｔｉｏｎａｒｙ ｐｒｏｂａｂｉｌｉｔｙ ｄｅｎｓｉｔｉｅｓ ｏｆ ａｍｐｌｉｔｕｄｅ， ｔｏｔａｌ ｅｎｅｒｇｙ， ｄｉｓｐｌａｃｅｍｅｎｔ

的碰撞壁发生碰撞．随着噪声强度增强到 Ｄ ＝ ０．８，
有较大一部分幅值稳态概率落在了幅值 ０． １ 到

０．１６８５之间，系统运动过程中发生单边碰撞的概率

增大，即振子在运动一个来回过程中与较近侧的碰

撞壁 ｂ２ 发生碰撞而不与远处碰撞壁 ｂ１ 碰撞的概率

增大．噪声强度继续增强，到 Ｄ＝ １．２ 时，系统运动发

生单侧碰撞的可能性继续增大，出现双侧碰撞的可

能性也有明显的增加．

５　 结论

采用广义 Ｈｅｒｔｚ 接触模型，将碰撞振动系统的

碰撞特性等效为非线性弹簧－阻尼器，建立了一类

双边非对称约束的碰撞振动动力学模型．这种碰撞

模型兼具刚性碰撞模型和 Ｈｅｒｔｚ 接触模型的优点，
比较符合实际的碰撞过程．利用基于广义谐和函数

的随机平均法研究系统的稳态响应，并用蒙特卡罗

模拟验证了该方法的有效性．对于这类强非线性碰

撞振动系统，通常的线性化处理方法不再适用，而
用该随机平均法仍可得到很好的结果．并且，由本

文算例可见，随着激励强度的增强，碰撞系统的非

线性效应增强，幅值的稳态概率密度出现较大的变

化．此外，利用广义胞映射法得到系统的稳态响应，
说明当系统的噪声激励为非白的时，如果广义胞映

射的一步转移时长取的足够大，远大于噪声各分量

的相关时间，利用广义胞映射方法也可以得到很好

的结果．
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