复合材料细长柱受冲击荷载动力屈曲研究*

汪永军 张渲铃 李映辉*

(西南交通大学力学与工程学院,成都 610031)

摘要 对复合材料细长柱在轴向冲击荷载下的动力屈曲问题进行了研究.基于单层材料本构方程及 D'Alembert 原理,建立了结构轴向及横向耦合振动方程.用 Laplace 变换得到轴向运动解析解,并用 Galerkin 法对 结构横向振动进行求解.用数值方法讨论了冲击质量、冲击速度,复合材料铺层角等对结构临界动力屈曲时 间及冲击物与结构接触时间的影响.结果表明随着冲击质量、冲击速度,复合材料铺层角增大,结构动力屈曲 时间减小;冲击速度,铺层角对冲击块与结构的接触时间无影响.

关键词 复合材料细长柱, Laplace 变换, Galerkin 法, 解析解, 动力屈曲

DOI: 10.6052/1672-6553-2017-065

引言

在对结构承受轴向冲击荷载作用的研究中, Koning 和 Taub^[1]对两端简支,具有初始弯曲度的 杆受轴向冲击荷载作用进行了研究,讨论了轴向冲 击荷载小于、等于及大于静态欧拉荷载三种情况结 构屈曲.Ari-Gur 等^[2]通过实验与理论分析,研究了 轴向冲击荷载作用下金属材料柱的动力学响应,利 用 Rayleigh 梁理论对具有初始几何缺陷柱进行建 模,用有限差分法对系统求解.Hayashi 和 Sano^[3,4] 研究了低速与高速冲击下,两端铰支且初始处于弯 曲状态下柱的动力屈曲问题.Ji 和 Waas^[5]研究了 轴向冲击荷载作用下细长柱的动力屈曲,文章引入 了临界动力屈曲时间.

杨毅等^[6]在传统解析法的基础上,推导了位移 形式的传递函数矩阵,研究了圆柱壳自由振动特 性.王宇等^[7]基于薄壳理论,研究了薄壁圆柱壳的 高阶模态振动特性.Krishnamurthy 等^[8]用有限元法 研究了金属冲击块冲击下,复合材料圆柱壳的动力 学响应及残余损伤.Her 和 Liang^[9]采用有限元法 研究了复合材料壳在轴向低速冲击下的动力学响 应.Zhao 和 Cho^[10]研究了低速冲击下复合材料壳 损伤的产生与传播,用八节点非协调单元分析了层 间应力及渐进失效机理. 目前,对复合材料柱在轴向冲击荷载作用下的 动力屈曲问题研究较少,且在已有研究,多采用实 验与数值分析相结合的方法.本文将基于单层本构 关系,建立复合材料柱在轴向冲击荷载下的轴向及 横向耦合振动方程,用 Laplace 变换求解结构轴向 振动方程,得到结构轴向运动的解析解.将上述解 析解代入横向振动方程,用 Galerkin 法求解结构横 向振动方程,分析冲击过程中各参数对结构动力屈 曲时间的影响.

轴向冲击荷载下复合材料细长柱动力学 控制方程

1.1 轴向冲击荷载下复合材料细长柱动力学模型

图 1 为坐标系 *x-y-z* 中,轴向冲击荷载下复合 材料细长柱模型,下端与基础刚性固定连接,上端 为滑动铰支座.其中柱长 *L*,截面半径 *R*,铺层数 *n*. 第 *i* 层材料密度 ρ_i(*i*=1, 2, …, *n*),第 *i* 厚度 *h_i*= *r_i=r_{i-1},r_i 为*第 *i* 层半径.

1.2 轴向冲击荷载下复合材料细长柱的运动平衡 方程

对轴向冲击荷载下复合材料细长柱作如下假 设:(1)结构变形处于线弹性状态;(2)不考虑变形 过程中截面的转动效应;(3)截面变形满足平截面 假设;(4)层间位移连续.

²⁰¹⁷⁻⁰³⁻¹² 收到第1稿,2017-04-15 收到修改稿.

^{*}国家自然科学基金资助项目(11372257)

[†] 通讯作者 E-mail:yinghui.li@ home.swjtu.edu.cn

图 1 复合材料细长柱及截面图

Fig.1 Composite slender column and its cross section

1.2.1 单层材料本构关系

图 2 给出了材料纤维角示意图, θ 为纤维方向 角,表示从 x 轴转向 1 轴的角度, 以逆时针为正. 其 中 x 轴为整体坐标系方向, 1 方向为纤维方向.

图 2 材料纤维角 Fig.2 Fiber angle of material

单层材料应力-应变关系为[11]

$$\sigma = \overline{Q} \varepsilon$$

其中, $\boldsymbol{\sigma}$ =($\boldsymbol{\sigma}_x, \boldsymbol{\sigma}_y, \boldsymbol{\sigma}_z$)^T, $\boldsymbol{\varepsilon}$ =($\boldsymbol{\varepsilon}_x, \boldsymbol{\varepsilon}_y, \boldsymbol{\varepsilon}_z$)^T 为应力张 量及应变张量. $\overline{\mathbf{Q}}$ =(\overline{Q}_{ij})为材料刚度矩阵,其元素 为:

$$\overline{Q}_{11} = Q_{11}\cos^4\theta + 2(Q_{12} + 2Q_{66})\cos^2\theta\sin^2\theta + Q_{22}\sin^4\theta$$

$$\overline{Q}_{12} = (Q_{11} + Q_{12} - 4Q_{66})\sin^2\theta\cos^2\theta + Q_{12}(\sin^4\theta + \cos^4\theta)$$

$$\overline{Q}_{22} = Q_{11}\sin^4\theta + 2(Q_{12} + 2Q_{66})\cos^2\theta\sin^2\theta + Q_{22}\cos^4\theta$$

$$\overline{Q}_{16} = (Q_{11} - Q_{12} - 2Q_{66})\sin\theta\cos^3\theta + (Q_{12} - Q_{22} + Q_{12})\cos^2\theta + Q_{12}\cos^4\theta$$

 $2Q_{66}$) $\sin^3\theta\cos\theta$

$$\overline{Q}_{26} = (Q_{11} - Q_{12} - 2Q_{66}) \sin^3\theta \cos\theta + (Q_{12} - Q_{22} + 2Q_{66}) \sin\theta \cos^3\theta$$

$$\overline{Q}_{66} = (Q_{11} + Q_{22} - 2Q_{12} - 2Q_{66}) \sin^2\theta \cos^2\theta + Q_{66}(\sin^4\theta + \cos^4\theta)$$
(2)

式中, $Q_{11} = E_1 / (1 - \nu_{12} \nu_{21})$, $Q_{22} = E_2 / (1 - \nu_{12} \nu_{21})$, $Q_{12} = \nu_{21} E_2 / (1 - \nu_{12} \nu_{21})$, $Q_{66} = G_{12}$.其中, E_1 , E_2 为复合材料 主方向弹性模量, G_{12} 为剪切模量, ν_1 , ν_{21} 为泊松比. 1.2.2 内力计算

由 Kirchhoff 基本假定,几何关系为:

 $\boldsymbol{\varepsilon} = \boldsymbol{\varepsilon}^0 + \boldsymbol{z} \mathbf{K} \tag{3}$

式中, $\varepsilon^{0} = (\varepsilon_{x}^{0}, \varepsilon_{y}^{0}, \varepsilon_{z}^{0})^{T}, \varepsilon_{x}^{0} = u_{,x}, \varepsilon_{y}^{0} = v_{,y}, \gamma_{xy}^{0} = u_{,y} + v_{,x}; \varepsilon_{x}^{0}, \varepsilon_{y}^{0}, \mathcal{D}, \gamma_{xy}^{0}$ 为中面应变, $u, v \mathcal{D}, w \mathcal{D}$ 别 表示层合梁中面在 $x, y \mathcal{D}, z$ 方向上的位移. **K** = $(K_{x}, K_{y}, K_{xy})^{T}, K_{x} = -w_{,xx}, K_{y} = -w_{yy}, K_{xy} = -2w_{,xy}, 其$ 中 K_{x}, K_{y} 表示中面弯曲挠曲率, K_{xy} 表示中面扭曲率.

截面内力为:

$$\mathbf{N} = \iint \boldsymbol{\sigma} \mathrm{d}A = 2\pi \sum_{k=1}^{n} \int_{r_{k-1}}^{r_k} r \, \overline{\mathbf{Q}}^{(k)} \, \boldsymbol{\varepsilon} \mathrm{d}r \tag{4}$$

式中 $\mathbf{N} = (N_x, N_y, N_{xy})^{\mathrm{T}}$.将式(3)代入(4)得: $\mathbf{N} = \mathbf{A} \mathbf{\epsilon}^0$

其中,**A** 为拉伸刚度矩阵,其元素 $A_{ij} = \sum_{k=1}^{n} \pi \overline{Q}_{ij}^{(k)}$ $(r_k^2 - r_{k-1}^2)$ (i,j = 1,2,6).

仅考虑 x-z 平面内振动,有:

$$N_x = 2\pi \sum_{k=1}^n \int_{r_{k-1}}^{r_k} \overline{Q}_{11}^{(k)} \frac{\partial u}{\partial x} r dr = C_{11} \frac{\partial u}{\partial x}$$
(6)

其中, $C_{11} = \pi \sum_{k=1}^{n} \overline{Q}_{11}^{(k)} (r_k^2 - r_{k-1}^2).$ 截面内力矩为:

$$\mathbf{M} = \iint \mathbf{\sigma} \mathbf{z} dA = 2\pi \sum_{k=1}^{n} \int_{r_{k-1}}^{r_k} r \, \overline{Q}^{(k)} \, \mathbf{\varepsilon} \mathbf{z} dr \tag{7}$$

可得:

A

(1)

$$I_x = C_{22} \frac{\partial^2 w}{\partial x^2} \tag{8}$$

其中, $C_{22} = \frac{1}{4}\pi \sum_{k=1}^{n} \overline{Q}_{11}^{(k)}(r_k^4 - r_{k-1}^4).$ 1.2.3 运动方程

取微段 dx 作为研究对象,受力如图 3. 其中 N_x 为轴力, F_s 为剪力, M_x 为绕 y 轴弯矩, C_{33} dx $\frac{\partial^2 u}{\partial t^2}$ 为轴向惯性力, C_{33} dx $\frac{\partial^2 w}{\partial t^2}$ 为横向惯性力, C_{33} = $\pi \sum_{k=1}^{n} \rho_k (r_k^2 - r_{k-1}^2)$.

(5)

Fig.3 Deformation of an element

由 D'Alembert 原理得:

$$\frac{\partial^2 u}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2} \tag{9}$$

$$C_{22}\frac{\partial^4 w}{\partial x^4} - \frac{\partial}{\partial x} \left[N_x \frac{\partial w}{\partial x} \right] + C_{33}\frac{\partial^2 w}{\partial t^2} = 0$$
(10)

其中 $c = \sqrt{C_{11}/C_{33}}$.

1.2.4 初始及边界条件

对图1所示受冲击荷载柱轴向初始条件及边 界条件为:

$$u(x,0) = 0$$

$$\frac{\partial u(x,0)}{\partial t} = 0 \quad 0 \le x \le L \quad (11)$$

$$\frac{\partial u(x,0)}{\partial t} = -V \quad x = L$$

$$u(0,t) = 0$$

$$M \frac{\partial^2 u(L,t)}{\partial t^2} = -Mg - C_{11} \frac{\partial u(L,t)}{\partial x}$$
(12)

其中,V为质量块与铰支端接触时的速度,M为冲 击质量.

横向初始条件及边界条件为:

$$w(x,0) = 0, \frac{\partial w(x,0)}{\partial t} = 0$$
(13)

$$w(0,t) = 0, \frac{\partial w(0,t)}{\partial x} = 0;$$

$$w(L,t) = 0, \frac{\partial^2 w(L,t)}{\partial x^2} = 0$$
(14)

2 轴向冲击荷载下复合材料细长柱响应

2.1 方程求解

2.1.1 轴向运动解

对式(9)进行 Laplace 变换,并考虑初始边界

条件式(11)得:

$$\frac{d^2 U(x,s)}{dx^2} - \left(\frac{s}{c}\right)^2 U(x,s) = \frac{V}{c^2} H(x-L)$$
(15)

其中, $U(x,s) = \int_{0}^{\infty} u(x,t)e^{-st}dt$, H(x - L)为 Heaviside 阶跃函数,表达式如下:

$$H(x-L) = \begin{cases} 0 & 0 < x < L \\ 1 & x \ge L \end{cases}$$
(16)

对边界条件式(12)进行 Laplace 变换可得: U(0,s)=0

$$M[s^{2}U(L,s)+V] = -Mg \frac{1}{s} - C_{11} \frac{\partial U(x,s)}{\partial x} \Big|_{x=L}$$
(17)

方程(15)的通解可表示为:

$$U(x,s) = c_1 e^{(s/c)x} + c_2 e^{-(s/c)x} + \frac{e^{-\frac{s}{c}(L+x)}}{2s^2} [e^{(s/c)L} - e^{(s/c)x}]^2 VH(x-L) (18)$$

由于 0≤x≤L 时,其特解恒为零.将式(17)代 入得:

$$c_{1} = \frac{-M(g+sV)}{s^{2} \left[\left(\frac{C_{11}}{c} + Ms \right) e^{(s/c)L} + \left(\frac{C_{11}}{c} - Ms \right) e^{-(s/c)L} \right]}$$

$$c_{2} = -c_{1}$$
(19)

对 c_1 进行 Taylor 展开得:

$$c_{1} = -\frac{M(g+sV)}{s^{2}} \left[\frac{1}{C_{11}/c+Ms} e^{-\frac{L}{c^{3}}} - \frac{C_{11}/c-Ms}{(C_{11}/c+Ms)^{2}} e^{-\frac{M}{c^{3}}} + \frac{(C_{11}/c-Ms)^{2}}{(C_{11}/c+Ms)^{3}} e^{-\frac{5L}{c^{3}}} - \frac{(C_{11}/c-Ms)^{3}}{(C_{11}/c+Ms)^{4}} e^{-\frac{T}{c^{3}}} + \cdots \right]$$
(20)
$$\Re \mathfrak{K}(19) \sim (20) \mathfrak{K} \lambda (18) \ \mathfrak{B} \ \mathfrak{W} = \mathfrak{K};$$

$$U(x,s) = -\frac{M(g+sV)}{s^{2}} \left\{ \frac{1}{C_{11}/c+Ms} \left[e^{\frac{s}{c}(x-L)} - e^{-\frac{s}{c}(x+L)} \right] - \frac{C_{11}/c-Ms}{(C_{11}/c+Ms)^{2}} \left[e^{\frac{s}{c}(x-3L)} - e^{-\frac{s}{c}(x+3L)} \right] + \frac{(C_{11}/c-Ms)^{2}}{(C_{11}/c+Ms)^{3}} \left[e^{\frac{s}{c}(x-5L)} - e^{-\frac{s}{c}(x+5L)} \right] - \cdots \right\}$$
(21)

对式(26)进行 Laplace 逆变换,得轴向位移解 析式为:

$$\begin{split} u(x,t) = f_1(x,t) H(t - \frac{L + x}{c}) + f_2(x,t) H(t - \frac{L - x}{c}) + \\ f_3(x,t) H(t - \frac{3L + x}{c}) + f_4(x,t) H(t - \frac{3L - x}{c}) + \end{split}$$

$$f_5(x,t)H(t - \frac{5L + x}{c}) + f_6(x,t)H(t - \frac{5L - x}{c}) + \dots$$
(22)

其中, $f_i(x,t)(i=1,2,3,\dots,I)$ 为 Laplace 逆变换后 的系数函数, 其表达式见附录.

2.1.2 横向运动求解

对式(10), $\overline{w}(x,t) = 0$ 为一个平凡解.对于动力屈曲问题,需寻找一个临界时间 t^* ,从该时刻开始,存在满足横向振动方程的解 $w^*(x,t)$,即:

$$\frac{\partial^4 w^*}{\partial x^4} - \frac{1}{\kappa^2 \partial x} \left[\frac{\partial u \partial w^*}{\partial x \partial x} \right] + \beta^4 \frac{\partial^2 w^*}{\partial t^2} = 0 \quad t = t^* \quad (23)$$

其中, $\kappa^2 = C_{22}/C_{11}$, $\beta^4 = C_{33}/C_{22}$.

设上式解为:

$$w^{*}(x,t) = e^{i\Omega t} W(x)$$
 (24)

其中,*i*为虚数单位,Ω为固有频率.将式(24)代入 (23)可得:

$$\frac{d^4W}{dx^4} - \frac{1}{\kappa^2} \frac{\partial}{\partial x} \left[\frac{\partial u dW}{\partial x \, dx} \right] = \Omega^2 \beta^4 W \quad t = t^*$$
(25)

其中,W(x)为满足边界条件的模态函数,设:

$$W(x) = \sum_{i=1}^{N} c_i W_i(x) \quad (i = 1, 2, 3, \dots, J) \quad (26)$$

其中,*c_i*为待定常数,*N*为特征函数个数,*W_i*为满 足边界条件的特征函数,可取为:

$$W_{i}(x) = (\cos\beta_{i}x - \cosh\beta_{i}x) - \frac{\cos\beta_{i}L - \cosh\beta_{i}L}{\sin\beta_{i}L - \sinh\beta_{i}L} (\sin\beta_{i}x - \sinh\beta_{i}x) \quad (27)$$

其中, $\beta_i L \approx (4i+1)\pi/4$.

将式(26)~(27)代人式(25),可得到残差 F(x),由 Galerkin法:

$$\int_{0}^{L} F(x) W_{i}(x) dx = 0 \quad (i = 1, 2, 3, \dots, J) \quad (28)$$

IT 42.

 $(\mathbf{K}+\mathbf{P})\mathbf{c}=\boldsymbol{\Omega}^{2}\mathbf{M}\mathbf{c}$ (29)

其中,**c** = { c_1 , c_2 , c_3 ,…, c_i }^T, **M** = (m_{ij})_{J×J} 为质量矩 阵,**K** = (k_{ij})_{J×J} 为刚度矩阵,**P** = (p_{ij})_{J×J} 为轴力产生 的刚度矩阵.**M**,**K**,**P** 的元素为:

$$k_{ij} = k_{ji} = \int_{0}^{L} \frac{d^{4} W_{i}(x)}{dx^{4}} W_{j}(x) dx \qquad (30)$$

$$p_{ij} = p_{ji} = \int_0^L \frac{1}{\kappa^2} \frac{\partial u(x,t)}{\partial x} \frac{dW_i(x)}{dx} \frac{dW_j(x)}{dx} dx$$
(31)

$$m_{ij} = m_{ji} = \beta^4 \int_0^L W_i(x) W_j(x) \,\mathrm{d}x \tag{32}$$

由 c_i(i=1,2,3,…J)不全为零得:

$$\mathbf{K} + \mathbf{P} - \mathbf{\Omega}^2 \mathbf{M} \mid = 0 \tag{33}$$

因 P 随时间变化,由式(33)可得 Ω 也随时间 变化.当 Ω 为实数时,式(24)有界;当 Ω 变为复数 且具有负虚部时,式(24)会随着时间的增加趋向 无穷,此时动力曲屈发生.结构首次发生动力屈曲 所对应的时间即为临界动力屈曲时间.

冲击块与结构的接触时间可通过式(22)确定. 当冲击块与柱分离时,柱顶端(x=L)处对应的轴向 边界条件为:

$$\left. \frac{\partial u(x,t)}{\partial x} \right|_{x=L} = 0 \tag{34}$$

通过上式可得冲击块与结构的接触时间.

2.2 数值计算与讨论

本节通过数值方法,研究在不同冲击质量、冲击速度,纤维方向角对复合材料柱动力屈曲时间及冲击块与结构接触时间的影响.计算中复合材料柱 模型为对称铺层,铺层数量为4,材料参数如表1, 纤维方向角为 $\theta = (-80^{\circ}/80^{\circ})_{s}, M/m_{0} = 0.1, m_{0}$ 为柱的质量,L = 0.9m, R = 0.005m, V = 1.5m/s.

表1 材料常数

Table 1 Material parameters

Material	Туре	Desity/ ρ	<i>E</i> ₁ (GPa)	<i>E</i> ₂ (GPa)	ν_{12}	<i>G</i> ₁₂ (GPa)
Graphite/Epoxy	A5/3501	1600	130	9.5	0.3	6

下述计算过程中,若未特殊说明,所选参数如上所述.

2.2.1 收敛性

式(22)所取项数 *I*和式(26)所取特征函数个数 *J*都对精度产生影响.表 2 给出 *t**=0.0002s,*J*=32 时,不同 *I* 对前 4 阶频率影响;表 3 给出了在 *t**=0.0002s,*I*=6 时,不同 *J* 对前 4 阶频率影响.可见,当*I*=6,*J*=32 时,各阶频率趋于稳定.下述计算章节取 *I*=6,*I*=32.

表 2 横向振动频率随 I 变化(J=32)

Table 2 Transverse frequencies with the variation of I(J=32)

Ι	Transverse frequencies					
	ω_1	ω_2	ω_3	ω_4		
1	109.8110	332.8616	781.6544	1338.9114		
2	108.6296	328.6783	775.4757	1335.5929		
3	107.6969	320.4565	774.6346	1330.7654		
4	106.4786	315.1677	773.3669	1328.5754		
5	105.3678	313.9109	773.3543	1326.5646		
6	105.2529	312.0275	773.2567	1326.4556		

表 3 横向振动频率随 J 变化(I=6)

Table 3 Transverse frequencies with the variation of J(I=6)

Ι	Transverse frequencies					
	$\boldsymbol{\omega}_1$	ω_2	ω_3	ω_4		
4	106.2901	314.1080	774.9463	1328.2510		
8	105.7121	312.6296	773.4209	1326.8330		
16	105.2696	312.0487	773.5669	1326.8778		
32	105.2529	312.0275	773.5844	1326.8898		
64	105.1512	311.9143	773.6959	1326.9447		

2.2.2 冲击质量影响

图 4 给出了冲击质量对动力屈曲时间与接触时间的影响.随着冲击质量增加,结构轴向冲击力增大,导致横向刚度减小,所以动力屈曲时间减小;接触时间随着冲击质量的增加而增加,两者之间呈线性关系.当冲击质量小于 0.15m₀ 时,在当前所给参数情况下,结构动态屈曲时间不存在,即结构不会出现动力屈曲.

Fig.4 Dynamic buckling time and contact duration with the variation of impact mass

2.2.3 冲击速度影响

图 5 给出了动力屈曲时间与接触时间随冲击 速度变化.当冲击速度 V 增加,结构轴向冲击力增 大,导致横向刚度减小,所以动力屈曲时间减小:当

图 5 动力屈曲时间与接触时间随冲击速度变化 Fig.5 Dynamic buckling time and contact duration with the variation of impact velocity

冲击速度小于 2m/s 时,在当前所给参数情况下,其 屈曲时间不存在,即不会出现动态屈曲,而冲击速 度与接触时间无关.

2.2.4 铺层角影响

图 6 给出了动力屈曲时间与接触时间随复合 材料铺层角变化.随着铺层角度增加,结构横向刚 度减小,动力屈曲时间降低;且当铺层角大于 80 。 时,结构横向刚度变化很小,所以在质量与速度一 定的情况下,结构动力屈曲时间变化不大;铺层角 对冲击质量块与结构接触时间无影响.

the variation of fiber angle

3 结论

研究了轴向冲击荷载作用下复合材料柱的动力屈曲特性,讨论了冲击质量、速度,纤维方向角对动力屈曲时间及冲击块与结构接触时间的影响,可得出如下结论:

(1)随着冲击质量、冲击速度,复合材料纤维 方向角的增大,结构横向刚度都将减小,导致结构 动力屈曲时间减小.

(2)冲击速度,铺层角对质量块与结构的接触 时间无影响.

(3) 增大冲击质量将增加质量块与结构接触 时间, 两者呈线性关系.

参考文献

- Koning C, Taub J. Impact buckling of thin bars in the elastic range hinged at both ends. Washington: Technical Report Archive and Image Library, 1934
- 2 Ari-gur J, Weller T, Singer J. Experimental and theoretical studies of columns under axial impact. *International*

第4期

307

Journal of Solids and Structures, 1982, 18(7):619~641

- 3 Hayashi T, Sano Y. Dynamic buckling of elastic bars: 1st report, the case of low velocity impact. Bulletin of the JSME, 1972,15(88):1167~1175
- Hayashi T, Sano Y. Dynamic buckling of elastic bars:
 2nd report, the case of high velocity impact. Bulletin of the JSME, 1972, 15(88):1176~1184
- 5 Ji W, Waas A M. Dynamic bifurcation buckling of an impacted column. International Journal of Engineering Science, 2008,46(10):958~967
- 6 杨毅,魏光涛,阎桂荣.圆桂壳自由振动特性分析方法研究.应用力学学报,2011,28(1):59~63 (Yang Y, Wei G T, Yan G R. The research of vibration analysis methods for circular shell. *Chinese Journal of Applied Mechanics*, 2011,28(1):59~63 (in Chinese))
- 7 王宇,罗忠,李昌等. 薄壁圆柱壳的高阶模态振动特性 研究. 动力学与控制学报, 2016, 14(2):131~137 (Wang Y,Luo Z,Li CH, et al. Study on vibration charac-

teristics of high-order modal for a thin cylindrical shell.
Journal of Dynamics and Control, 2016,14(2):131~137
(in Chinese))

- 8 Krishnamurthy K S, Mahajan P, MittalR K. A parametric study of the impact response and damage of laminated cylindrical composite shell. *Composites Science and Technol*ogy, 2001,61(12):1655~1669
- 9 Her S C, Liang Y C. The finite element analysis of composite laminates and shell structures subjected to low velocity impact. *Composite Structures*, 2004,66(1-4):277~ 285
- 10 Zhao G P, Cho C D. Damage initiation and propagation in composite shells subjected to impact. *Composite Structures*, 2007,78(1):91~100
- 11 沈观林,胡更开. 复合材料力学. 北京:清华大学出版 社, 2006 (Sheng G L, Hu G K. Mechanics of Composite Materials. Beijing: Tsinghua University, 2006 (in Chinese))

DYNAMIC BUCKLING OF A COMPOSITE SLENDER COLUMN UNDER IMPACT LOADS*

Wang Yongjun Zhang Xuanling Li Yinghui[†]

(School of Mechanics and Engineering, Southwest Jiaotong University, Chengdu 610031, China)

Abstract This paper investigates the dynamic buckling of a composite slender column under axial impact loads. Coupled axial and lateral vibration equations are constructed by using the constitutive equation of one layer and D' Alembert's principle. The analytical solution of axial motion is derived by employing Laplace transform, and the transverse response is also studied by applying Galerkin's method. The influences of impact mass, impact velocity, and fiber angle on the dynamic buckling time and the contact duration are evaluated. Results show that the dynamic buckling time decreases with the increase of impact mass, impact velocity, and fiber angle. However, the impact velocity and fiber angle show negligible influence on the contact duration.

Key words composite slender column, Laplace transform, Galerkin's method, analytical solution, dynamic buckling

Received 12 March 2017, revised 15 April 2017.

^{*} The project is supported by the National Natural Science Foundation of China(11372257).

[†] Corresponding author E-mail; yinghui.li@ home.swjtu.edu.cn

附录:

式(22)中 Laplace 逆变换后的系数函数:

$$\begin{split} f_{1}(x,t) &= -\frac{Mc}{C_{11}}g\left(\frac{L+x}{c}-t\right) + \\ &\left\{ V - \frac{Mc}{C_{11}}g\right\} \frac{Mc}{C_{11}} \left[1 - e^{-\frac{C_{11}}{Mc}\left(t - \frac{L+x}{c}\right)}\right] \\ f_{2}(x,t) &= \frac{Mc}{C_{11}}g\left(\frac{L-x}{c}-t\right) - \\ &\left\{ V - \frac{Mc}{C_{11}}g\right\} \frac{Mc}{C_{11}} \left[1 - e^{-\frac{C_{11}}{Mc}\left(t - \frac{L-x}{c}\right)}\right] \\ f_{3}(x,t) &= \frac{Mc}{C_{11}}g\left(\frac{3L+x}{c}-t\right) - \\ &\left\{ V - \frac{3Mc}{C_{11}}g\right\} \frac{Mc}{C_{11}} \left[1 - e^{-\frac{C_{11}}{Mc}\left(t - \frac{3L+x}{c}\right)}\right] + \\ &2\left(\frac{3L+x}{c}-t\right) \left[g - \frac{C_{11}V}{Mc}\right] \frac{Mc}{C_{11}} e^{-\frac{C_{11}}{Mc}\left(t - \frac{3L+x}{c}\right)} \right] + \\ &\left\{ V - \frac{3Mc}{C_{11}}g\right\} \frac{Mc}{C} - t \right) + \\ &\left\{ V - \frac{3Mc}{C_{11}}g\right\} \frac{Mc}{C_{11}} \left[1 - e^{-\frac{C_{11}}{Mc}\left(t - \frac{3L+x}{c}\right)}\right] - \end{split}$$

$$2\left(\frac{3L-x}{c}-t\right)\left[g-\frac{C_{11}V}{Mc}\right]\frac{Mc}{C_{11}}e^{-\frac{C_{11}}{Mc}\left(t-\frac{3L-x}{c}\right)}$$

$$f_{5}(x,t) = -\frac{Mc}{C_{11}}g\left(\frac{5L+x}{c}-t\right) - 4\frac{Mc}{C_{11}}g\left(\frac{5L+x}{c}-t\right)e^{-\frac{C_{11}}{Mc}\left(t-\frac{5L+x}{c}\right)} + 2\left(-t\right)^{2}\left[g-\frac{C_{11}V}{Mc}\right]e^{-\frac{C_{11}}{Mc}\left(t-\frac{5L+x}{c}\right)} + \frac{Mc^{2}}{C_{11}}\left(\frac{V}{c}-\frac{5Mg}{C_{11}}\right)\left[1-e^{-\frac{C_{11}}{Mc}\left(t-\frac{5L+x}{c}\right)}\right]$$

$$f_{6}(x,t) = \frac{Mc}{C_{11}}g\left(\frac{5L-x}{c}-t\right) + 4\frac{Mc}{C_{11}}g\left(\frac{5L-x}{c}-t\right)e^{-\frac{C_{11}}{Mc}\left(t-\frac{5L-x}{c}\right)} - 2\left(-t\right)^{2}\left[g-\frac{C_{11}V}{Mc}\right]e^{-\frac{C_{11}}{Mc}\left(t-\frac{5L-x}{c}\right)} - \frac{Mc^{2}}{C_{11}}\left(\frac{V}{c}-\frac{5Mg}{C_{11}}\right)\left[1-e^{-\frac{C_{11}}{Mc}\left(t-\frac{5L-x}{c}\right)}\right]$$