电动帆改进推力模型及深空探测性能分析*

霍明英^{1†} 齐乃明¹ 刘宇飞² 曹世磊¹ 叶炎茂¹

(1.哈尔滨工业大学 航天工程系,哈尔滨 150001)(2.中国航天科技集团公司钱学森空间技术实验室,北京 100094)

摘要 电动太阳风帆(简称电动帆)是一种利用太阳风动能冲力飞行的新兴无质损飞行器.针对电动帆传统 推力模型中忽略了姿态对推力幅值影响的问题,本文推导得出了一种解析形式的改进推力模型,并与最新 的多项式拟合改进推力模型进行了对比.对比结果显示两种改进推力模型数值结果很接近,但本文的解析改 进推力模型形式更简单.为了重新评估电动帆在深空探测中的性能,以地球至火星的飞行任务为算例,分别 采用传统推力模型和解析改进推力模型进行了电动帆轨迹优化仿真.仿真结果显示,在相同特征加速度情况 下,采用改进解析推力模型完成任务所需时间,大于采用传统推力模型所用时间.上述现象的原因在于传统 推力模型中忽略了姿态改变对推力加速度大小的影响,并高估了电动帆所能产生的最大推进角.

关键词 电动帆, 改进推力模型, 深空探测, 轨迹优化

DOI: 10.6052/1672-6553-2018-003

引言

电动帆是由芬兰学者 Janhunen 于 2004 年提出 的一种无质损的推进方式^[1].与太阳帆不同的是, 电动帆的动力来源不是太阳光压,而是太阳风带电 粒子的动能冲力,其飞行原理示意图如图 1 所示. 电动帆由很多根长而细的柔性金属链所组成,这些 金属链通过飞行器自旋展开.空间飞行器上的太阳 能电子枪向外喷射电子,使金属链始终保持在高度 的正电位,这些带电的金属链会排斥太阳风正电粒 子,从而利用太阳风的动能冲力推动空间飞行器驶 向目标方向.由于电动帆能够利用太阳风的动能冲 力飞行而不需要消耗推进剂,因此电动帆非常适用 于长期的空间飞行任务^[2,3].

欧盟第七框架协议资助电动帆项目组数百万 欧元开展理论研究及原型样机研制.美国航空航天 局(NASA)马歇尔航天中心也正在实施 HERTS(太 阳风静电高速运输系统)计划,计划将电动帆应用 于太阳风层顶的探测.电动帆的飞行原理已经经过 空间飞行测试(ESTCube-1 卫星),其原型样机的测 试将在未来的几年内完成(Aalto-1 卫星^[4,5],如图2 所示).目前,国内已有航天科技集团五院 502 所^[6,7]、北京理工大学^[8]和哈尔滨工业大学^[9,11]等 正在开展相关的研究工作.

近年来,电动帆推力矢量数学模型方面的研究 得到了相关研究团体的关注.在电动帆的传统推力 模型中,忽略了电动帆姿态对推力标量的影响,并 假设电动帆的推进角为入射角的一半^[12].针对此

²⁰¹⁷⁻⁹⁻²⁹ 收到第1稿,2017-12-31 收到修改稿.

^{*}国家自然科学基金(11702072),中国博士后科学基金资助(2017M611372),黑龙江省政府博士后基金资助(LBH-Z16082),微小型航天器技术 国防重点学科实验室开放基金资助(HIT.KLOF.MST.201607),钱学森实验室种子基金(QXS-ZZJJ-02),上海航天科技创新基金资助(SAST2016039)

[†] 通讯作者 E-mail:huomingying123@163.com

图 2 电动帆原型样机 Aalto-1 试验卫星 Fig.2 Aalto-1 prototype test satellite of electric sail

问题,本文推导得出一种解析形式的改进推力模型,并与最新的多项式拟合改进推力模型^[13]进行 了对比.另外,为了重新评估电动帆在深空探测中 的性能,以地球至火星飞行任务为算例,分别采用 传统推力模型和解析改进推力模型进行了电动帆 轨迹优化仿真,并以不同的特征加速度情况进行对 比分析.

1 电动帆推力模型及对比

1.1 坐标系及角度定义

本文所涉及到的参考系共三个,分别是日心黄 道参考系、轨道参考系和体参考系,如图3所示.日 心黄道参考系 o_s - x_sy_sz_s 的原点为太阳中心,正 x_s 轴指向历元 J2000.0 时刻平春分点方向,正 z_s 轴垂 直于 J2000.0 时刻黄道面并指向黄道北极方向,y_s 轴与 x_s 轴和 z_s 构成右手系.轨道参考系 o_o - x_oy_oz_o 的原点位于电动帆航天器质心,正 z_o 轴为太阳-电 动帆航天器的矢量方向,y_o 轴与 z_o 轴和日心黄道 参考系中的 z_s 轴垂直,方向指向飞行运动方向,x_o 轴与 y_o 轴和 z_o 构成右手系.电动帆体参考系 o_b x_by_bz_b 的原点位于电动帆航天器质心,正 x_b 轴沿着 1 号金属链方向,正 z_b 轴垂直于电动帆工作面,并 指向自旋角速度矢量方向,y_b 与 x_b 和 z_b 构成右手 系.

如图 3 所示,太阳风入射角 α_n 为太阳风入射 方向 z_o 与电动帆回转体轴 z_b 之间的夹角,推进锥 角 α 为推进加速度矢量 a 与电动帆回转体轴 z_b 之 间的夹角,推进钟角 δ 为推进加速度矢量在 $o_o x_o y_o$ 平面内分量与 x_o 轴之间的夹角.电动帆航天器在轨

Fig.3 Reference frame and angles

1.2 传统推力模型

在意大利比萨大学 Mengali 教授提出的电动帆 传统推力模型^[12]中,忽略了电动帆姿态对推力标 量的影响,即假设在电动帆工作面与太阳风入射方 向不垂直时,推力幅值不变.实际上电动帆与太阳 帆一样,不只推力的方向由帆体姿态所决定,推力 大小也一定程度上取决于帆体相对太阳风速度方 向的姿态,原因是当电动帆帆体平面相对太阳风粒 子运动方向产生角度变化时,太阳风粒子与带电金 属量的动量交互效率将发生改变,从而最终影响推 力的大小.另外,传统推力模型中还假设推进锥角 α 近似等于太阳风入射角 α_n 的一半,即 $\alpha \approx \alpha_n/2$.传 统推力模型中电动帆推力矢量 a 在轨道参考系 o_o -

$$\boldsymbol{a} = \kappa \boldsymbol{a}_{\oplus} \frac{\boldsymbol{r}_{\oplus}}{\boldsymbol{r}} \begin{bmatrix} \sin(\alpha_{n}/2) \cos\delta \\ \sin(\alpha_{n}/2) \sin\delta \\ \cos(\alpha_{n}/2) \end{bmatrix}$$

(1)

其中 a_{\oplus} 为电动帆的特征加速度,即电动帆距离太阳 r_{\oplus} =1AU 处所能产生的最大加速度值; $\kappa \in [0, 1]$ 为电动帆推力开关系数,可以通过电子枪调整金属链电压来调整电动帆整体的推力.

为了表征太阳风入射角对推力大小的影响,引 入无量纲加速度 γ,其表达式为:

$$\mathbf{v} \triangleq \frac{\| a \|}{a_{\oplus}(r_{\oplus}/r)} \tag{2}$$

由等式(1)可知,电动帆传统推力模型中无量 纲加速度γ≦1,即假设推力大小不受姿态的影响.

1.3 多项式改进推力模型

为了讨论太阳风入射角 α_n 对推进锥角 α 和推 力大小 γ 的影响,日本学者 Yamaguchi 和 Yamakawa^[13]通过部分实验和数学仿真的方法,以多项式 拟合的形式得出了太阳风入射角 α_n 与推进锥角 α 的关系式(等式 3)和太阳风入射角 α_n 与推力大小 γ 的关系式(等式 4).意大利学者 Quarta^[14]在此模 型基础上采用间接优化方法得出了多组优化轨迹:

$$\alpha = b_6 \alpha_n^6 + b_5 \alpha_n^5 + b_4 \alpha_n^4 + b_3 \alpha_n^3 + b_2 \alpha_n^2 + b_1 \alpha_n + b_0 \qquad (3)$$

$$\gamma = c_6 \alpha_n^6 + c_5 \alpha_n^5 + c_4 \alpha_n^4 + c_3 \alpha_n^3 + c_2 \alpha_n^2 + c_1 \alpha_n + c_0 \qquad (4)$$

其中 $b_k(k=0,1,\dots,6)$ 和 $c_k(k=0,1,\dots,6)$ 是多项 式拟合系数,如表1所示.

表1 多项式拟合系数

Table 1 Polynomial fitting coefficient

k	0	1	2	3	4	5	6
b_k	0.000	4.853× 10 ⁻¹	3.652× 10 ⁻³	-2.661× 10 ⁻⁴	6.322× 10 ⁻⁶	-8.295×10^{-8}	3.681×10^{-10}
c_k	1.000	6.904× 10 ⁻⁵	-1.271× 10 ⁻⁴	7.027× 10 ⁻⁷	-1.261×10^{-8}	1.943× 10 ⁻¹⁰	-5.896× 10 ⁻¹³

1.4 解析改进推力模型

在本文作者前期的研究^[15]中,以电动帆单根 带电金属链推力模型为基础,采用有限傅里叶级数 加和方法,推导得出了考虑电动帆姿态影响的推力 矢量模型,在轨道参考系 o₀-x₀ z₂ 下的表达式为:

$$a = \kappa a_{\oplus} \frac{r_{\oplus}}{r} \begin{bmatrix} \cos\varphi \sin\theta \cos\theta \\ -\sin\varphi \cos\varphi \cos^2\theta \\ \cos^2\varphi \cos^2\theta + 1 \end{bmatrix}$$
(5)

其中 φ 和 θ 为体参考系相对轨道系的姿态角(定义见2.1节).由姿态角角度定义可知,太阳风入射角 α_n 的余弦、推进钟角 δ 的正弦和余弦可以写作如下形式:

$$\cos\alpha_{n} = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \cdot (A_{ob}(\varphi, \theta, \psi) \cdot \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^{T})$$
$$= \cos\varphi \cos\theta \tag{6}$$

$$\cos\delta = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$$
.

$$\frac{\operatorname{diag}(1 \ 1 \ 0) \cdot A_{ob}(\varphi, \theta, \psi) \cdot [0 \ 0 \ 1]^{\mathrm{T}}}{\left|\operatorname{diag}(1 \ 1 \ 0) \cdot A_{ob}(\varphi, \theta, \psi) \cdot [0 \ 0 \ 1]^{\mathrm{T}}\right|}$$
$$= \sin\theta / \sin\alpha_{\mathrm{n}}$$
(7)

$$\sin\delta = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$$

$$\frac{\operatorname{diag}(1 \ 1 \ 0) \cdot A_{ob}(\varphi, \theta, \psi) \cdot [0 \ 0 \ 1]^{\mathrm{T}}}{|\operatorname{diag}(1 \ 1 \ 0) \cdot A_{ob}(\varphi, \theta, \psi) \cdot [0 \ 0 \ 1]^{\mathrm{T}}|}$$
$$= -\cos\theta \sin\varphi / \sin\alpha_{\mathrm{n}}$$
(8)

将等式(6)-等式(8)带入等式(5),可得到以 太阳风入射角 α_n 和推进钟角δ描述的推力模型:

$$\boldsymbol{a} = \begin{bmatrix} a_x \\ a_y \\ a_z \end{bmatrix} = \kappa a_{\oplus} \frac{r_{\oplus}}{r} \begin{bmatrix} \cos\alpha_n \sin\alpha_n \cos\delta/2 \\ \cos\alpha_n \sin\alpha_n \sin\delta/2 \\ (\cos^2\alpha_n + 1)/2 \end{bmatrix}$$
(9)

由图 3 可知,推进锥角 α 的余弦可写成如下形

 $\cos\alpha = \frac{a_z}{\|\boldsymbol{a}\|} = \frac{(\cos^2\alpha_n + 1)/2}{\sqrt{(\cos\alpha_n \sin\alpha_n \cos\delta/2)^2 + (\cos\alpha_n \sin\alpha_n \sin\delta/2)^2 + ((\cos^2\alpha_n + 1)/2)^2}}$ (10)

化简等式(10)后,可得到推进锥角 α 与太阳 风入射角 α, 的解析关系式:

$$\alpha = \cos^{-1} \frac{\cos^2 \alpha_n + 1}{\sqrt{3\cos^2 \alpha_n + 1}}$$
(11)

参考 γ 的定义(等式(2)),可得到无量纲加速 度 γ 与太阳风入射角 α_n 的解析关系式:

$$\gamma = \frac{1}{2} \sqrt{3\cos^2 \alpha_n + 1} \tag{12}$$

1.5 推力模型对比

推进锥角 α 与太阳风入射角 α_n 的关系如图 4 所示,上述的三个推力模型在 $\alpha_n \in [0^\circ, 20^\circ]$ 区间 内能够很好地重合,说明传统推力模型的推进锥角 假设 $\alpha \simeq \alpha_n/2$ 在小太阳风入射角的情况下是适用 的.但随着太阳风入射角的增加,Yamaguchi 得到的 多项式改进模型和本文得到的解析改进模型都表 现出了非常显著的非线性变化行为.本文所得到的 推力模型在 α_n = 54.75°时,推进锥角 α 达到最大值 19.47°.

无量纲加速度 γ 与太阳风入射角 α_n 的关系如 图 5 所示,在两种改进的推力模型中无量纲加速度 γ 随着太阳风入射角 α_n 的增大而单调减小,并在 α_n = 90°时达到最小 γ = 0.5. 另外,本文还对无量纲 加速度径向分量(*z*_o 轴分量)和切向分量(*o*_o*x*_o*y*_o 平 面内分量)进行了对比,如图 6 和图 7 所示.两种改 进推力模型的无量纲径向加速度 γ_r 和无量纲切向 加速度 γ_t 均小于传统模型的估计值.另外,由图 4~ 图 7 可知,本文的解析改进推力模型与多项式改进 推力模型数值结果很接近,但本文的解析模型形式 更简单.

图 5 无量纲加速度 γ 与太阳风入射角 α_n 的关系

Fig.5 The relationship between dimensionless acceleration $\gamma \mbox{ and inclined angle } \alpha_n$

图 6 径向无量纲加速度 γ_r 与太阳风入射角 α_n 的关系 Fig.6 The relationship between radial dimensionless acceleration γ_r and inclined angle α_n

2 电动帆地球至火星轨迹优化及对比分析

为了重新评估电动帆在深空探测中的性能,本 文以地球至火星的飞行任务为算例,分别采用传统 推力模型和解析改进推力模型进行电动帆轨迹优

图 7 切向无量纲加速度 γ_1 与太阳风入射角 α_n 的关系

Fig.7 The relationship between tangential dimensionless acceleration γ_1 and inclined angle α_n

图 8 不同特征加速度下的地球-火星过渡时间

Fig.8 Earth-Mars transition time with different characteristic acceleration

化仿真.在电动帆航天器地球至火星轨迹优化问题 中,优化性能指标为飞行时间最优;在边界约束方 面,假设电动帆航天器在初始时刻位于地球逃逸抛 物线轨迹上,且逃逸剩余能量为零,并考虑了真实 星历约束.所采用的方法为一种结合遗传算法和高 斯伪谱法的混合优化方法^[9],能够在无任何初值猜 测的情况下完成电动帆航天器飞行轨迹的优化,避 免了单纯高斯伪谱法初值赋值繁琐的问题.

以不同特征加速度下电动帆自地球至火星的 过渡轨迹进行优化仿真,考虑的特征加速度范围为 0.5~1.1mm/s²,每个仿真之间的特征加速度间隔为 0.1mm/s²,基于传统推力模型和解析改进推力模型 优化得出的飞行时间与特推力模型进行优化仿真, 电动帆航天器特征加速度越大,完成过渡所需要的 飞行时间均越短.这说明电动帆的推进能力越强, 完成任务所需的飞行时间也就越短.

而两者之间不同的是,基于电动帆改进推力模型优化得出的飞行时间要大于基于传统模型优化 得出的飞行时间.出现这种现象的原因一共有两 点:①传统推力模型中忽略了姿态改变对推力加速 度大小的影响,假定即使帆体平面与太阳风粒子速 度方向不垂直时,动量交换效率依然不会减弱; ②传统模型中估计得出的最大推进锥角 α_{max} 假定 为 35°,比改进推力模型计算得出的最大推进锥角 $\alpha_{max} = 19.47°$ 大,即传统推力模型高估了电动帆的 切向推进能力.

3 结论

本文针对电动帆传统推力模型中忽略姿态对 推力幅值影响的问题,在原有基础上推导得出了一 种解析形式的电动帆改进推力模型,并与最新提出 的多项式拟合改进推力模型进行了对比.对比结果 显示:①传统推力模型的推进锥角假设在小太阳风 入射角的情况下是适用的,但随着太阳风入射角的 增大,估计偏差会越来越大:②两种改进推力模型 数值结果很接近,但本文的解析改进推力模型形式 更简单.另外,为了重新评估电动帆在深空探测中 的性能,本文以地球至火星的飞行任务为算例,分 别采用传统推力模型和解析改进推力模型进行了 电动帆轨迹优化仿真.仿真结果显示,在相同特征 加速度情况下采用改进解析推力模型完成任务所 需时间大于采用传统推力模型所用时间.分析结果 认为,出现上述现象的原因在于传统推力模型中忽 略了姿态改变对推力加速度大小的影响,且高估了 电动帆所能产生的最大推进角.

参 考 文 献

- 1 Janhunen P. Electric sail for spacecraft propulsion. Journal of Propulsion and Power, 2004,20(4):763~764
- 2 Janhunen P, Sandroos A. Simulation study of solar wind push on a charged wire: basis of solar wind electric sail propulsion. *Annales Geophysicae*, 2007,25(3):755~767
- 3 Kiprich S, Kurppa R, Janhunen P. Wire-to-wire bonding of lm-diameter aluminum wires for the Electric Solar Wind Sail. *Microelectronic Engineering*, 2011,88:3267~3269
- 4 Kestilä A, Tikka T, Peitso P, et al. Aalto-1 nanosatellitetechnical description and mission objectives. Geoscientific Instrumentation, Methods and Data Systems, 2013, 2 (1):121~130
- 5 Khurshid O, Tikka T, Praks J, et al. Accommodating the plasma brake experiment on-board the Aalto-1 satellite.

Proceedings of the National Academy of Sciences of the United States of America, 2014,64(2):258~266

- 6 Chen M, Xia G, Wei Y, et al. Charateristics and Stress Analysis of Sheath of Parallel Conducting Tethers for the Electric Sail. Acta Physica Sinica, 2016,65(209601):1 ~11
- 7 王昱,魏延明,李永等. 基于粒子群算法的电帆轨迹优 化设计. 中国空间科学技术, 2015,3(3):26~34 (Wang Y, Wei Y, Li Y, et al. Bian Bingxiu. Trajectory Optimization of Electric Sail Based on Particle Swarm Algorithm. *Chinese Space Science and Technology*, 2015,3 (3):26~34 (in Chinese))
- 8 胡权,张景瑞. 光电帆航天器姿态动力学建模. 第十五 届全国非线性振动暨第十二届全国非线性动力学和 运动稳定性学术会议. 中国,长沙:2015,05 (Hu Q, Zhang J R. Modeling of attitude dynamics of a photoelectric sail spacecraft. Fifteenth National nonlinear vibration and the Twelfth National Symposium on nonlinear dynamics and motion stability, China, Changsha:2015,05 (in Chinese))
- 9 Huo M, Mengali G, Quarta A A. Optimal planetary rendezvous with an electric sail. Aircraft Engineering and Aerospace Technology, 2016,88(4):515~522
- 10 霍明英,彭福军,赵钧等. 电动帆航天器谷神星探测任 务轨迹优化.宇航学报, 2015(12):1363~1372 (Huo M Y, Peng F J, Zhao J, et al. Trajectory optimization for ceres exploration with an electric sail. *Journal of Astronautics*, 2015(12):1363~1372 (in Chinese))
- 11 齐乃明, 霍明英, 袁秋帆. 电动帆轨迹优化及其性能分析. 宇航学报, 2013, 30(5):634~641 (Qi N M, Huo M Y, Yuan Q F. Trajectory optimization for ceres exploration with an electric sail. *Journal of Astronautics*, 2013, 30 (5):634~641 (in Chinese))
- 12 Mengali G, Quarta A A. Janhunen P. Electric sail performance analysis. Journal of Spacecraft and Rocket, 2008,45(1):122~129
- 13 Yamaguchi K, Yamakawa H. Study on orbital maneuvers for electric sail with on - off thrust control. Aerospace and Technology of Japanese, 2013, 12:79~88
- 14 Quarta A A, Mengali G. Minimum-time trajectories of electric sail with advanced thrust model. Aerospace Science and Technology, 2016,55:419~430
- 15 霍明英. 电动帆航天器动力学、控制及轨迹优化研究
 [博士学位论文]. 哈尔滨:哈尔滨工业大学, 2016
 (Huo M Y. Research on Dynamics Control and Trajectory)

Optimization for Electric Sails [Ph. D Thesis]. Harbin:

REFINED THRUST MODEL OF ELECTRIC SAIL AND ANALYSIS OF DEEP SPACE DETECTION PERFORMANCE *

Huo Mingying ^{1†} Qi Naiming¹ Liao Yufei² Cao Shilei ¹ Ye Yanmao¹

(1.Harbin Institute of Technology, Department of Aerospace Engineering, Harbin 150001, China)

(2. China Aerospace Science and Technology Corporation, Qian Xuesen Laboratory of Space Technology, Beijing 100094, China)

Abstract The electric solar wind sail (electric sail for short) is an innovative concept for spacecraft propulsion, which can generate continuous thrust without propellant by reflecting solar wind ions. In previous studies, the thrust of an electric sail is described by a classical model, which neglected the effects of the electric sail attitude on the propulsive thrust modulus and direction. The aim of this paper is to reappraise the performance of the electric sail in the Earth-Mars exploration mission with a refined thrust model, which considered the effect of the spacecraft attitude on both the thrust modulus and direction. The simulation results show that the flight times with the refined analytical thrust model are longer than that with classical thrust model. The reason for this phenomenon is that the classical thrust model ignores the attitude change effect on the thrust acceleration, and overestimate the maximum thrust cone angle.

Key words electric sail, fined thrust model, deep-space exploration, trajectory optimization

Received 29 September 2017, revised 31 December 2017.

^{*} The project supported by the National Science Foundation of China(11702072), the China Postdoctoral Science Foundation(2017M611372), the Heilongjiang Postdoctoral Fund(LBH-Z16082), the Open Fund of National Defense Key Discipline Laboratory of Micro-Spacecraft Technology(HIT. KLOF.MST.201607), the Seed Fund of Tsien Hsueshen Space Technology Laboratory Seed Fund(QXS-ZZJJ-02), and Innovation Fund from Shanghai Academy of Spaceflight Technology (SAST)(SAST2016039).

[†] Corresponding author E-mail:huomingying123@163.com