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Table 1 Largest Lyapunov exponent of Duffing system
with IMF lost
T m P Linear interval Ay
Duffing 25 9 213 [62 298] 0.6753
IMF1 27 6 113 [237 352] 0.3213
IMF2 52 5 295 [382 499] 0.1136
IMF3 55 4 369 [528 890] -0.0298
Duffing-IMF1 48 9 391 [510 914] 0.1626
Duffing-IMF2 30 6 200 [181 299] 0.4438
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Table 2 Largest Lyapunov exponent of Lorenz system

with IMF lost

T m P Linear interval Ay

x 39 6 235.5 [230 499] 1.5156
IMF1 40 7 147.4 [315 488] 1.0847
IMF2 41 6 358.5 [230 363] 0.9699
IMF3 60 4 461.0 [333 583] 0.4362
x—IMF1 49 6 457.4 [725 847] 0.1882
x~IMF2 35 5 300.3 [631 698] 0.5083
x~IMF3 42 6 217.9 [342 469] 0.3788
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Fig.3 EMD and x component repsonse of the Lorenz system
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Table 3 Largest Lyapunov exponent of Duffing system
with IMF cutdown

P Linear interval Ay

T m

Duffing 25 9 213 [62 298] 0.6753
Duffing-IMF1x0.5 33 7 305.4 [120 403] 0.5561
Duffing-IMF2x0.5 28 7 229.0 [70 324] 0.5221
Duffing-IMF3x0.5 33 6 2307 [192 388] 0.3714
Duffing-IMF1x0.3 29 4 2754  [123 369] 0.5850
Duffing-IMF2x0.3 27 5 230.9 [145 349] 0.5439
Duffing-IMF3x0.3 29 5 231.6  [239 430] 0.4194
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Table 4 Largest Lyapunov exponent of Lorenz system

with IMF cutdown

T m P Linear interval Ay
x 39 6 235.5 [230 499] 1.5156
x—IMF1x0.5 42 6 289.7 [551 684] 1.0968
x—IMF2x0.5 41 5 281.7 [470 554] 0.7923
x—IMF3x0.5 47 5 226.1 [444 482] 0.4214
x—IMF1x0.3 31 6 323.1 [693 821] 1.1658

x—IMF2x0.3 37 6 278.5 [423 490] 1.41
x—IMF3x0.3 41 6 236.2 [414 489] 0.8918
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EFFECT OF INTRINSIC MODE FUNCTION LOST AND CUTDOWN
ON NONLINEAR CHARACTERISTIC OF ORIGINAL SYSTEM*
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Abstract For the Intrinsic Mode Functions solved by the Empirical Mode Decomposition method, the largest

Lyapunov exponents of Duffing and Lorenz systems with the Intrinsic Mode Functions lost and cutdown was stud-

ied in this paper. It is found that small attractor destruction occurred with the decreasing Intrinsic Mode Func-

tions, but the largest Lyapunov exponent was big. With the low-level Intrinsic Mode Functions lost and cutdown,

the largest Lyapunov exponent of the reponse decreased clearly. With the increase of cutdown ratio, the largest

Lyapunov exponent decreased more when compared with the original signal.
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