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摘要　 模拟了 Ｗｉｌｌａｍｏｗｓｋｉ⁃Ｒöｓｓｌｅｒ 化学系统经倍周期分岔进入混沌，以及由混沌退化到周期态的全过程．给

出了分岔图与最大 Ｌｙａｐｕｎｏｖ 指数谱和庞加莱截面及功率谱和返回映射图，仿真结果揭示了该系统混沌行为

的普适特征．设计了自适应控制器和非线性控制器，通过理论分析及数值仿真实现了对其无量纲化系统的控

制．采用驱动⁃响应的同步方法实现该系统的全局指数同步，数值仿真结果表明该方法是有效的．
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引言

人们很早就发现化学反应中存在混沌现

象［１，２］，化学混沌作为混沌学的一个重要分支，已
经越来越被人们所关注和重视．所谓化学混沌［３］，
是指化学反应中某些组份的宏观浓度不规则地随

时间变化的现象，这种不规则性与实验条件和仪器

误差无关，是由其内部反应机理所决定的．事实上，
绝大多数的化学反应速率方程都是非线性的，因此

化学反应出现振荡（周期的或者混沌型的）是不足

为奇的．１９２１ 年，Ｂｒａｙ 就已发现 Ｈ２Ｏ２ 被 Ｉ２⁃ＨＩＯ３ 催

化分解的反应中出现振荡［１］ ．１９５８ 年，别洛索夫发

现，由溴酸钾［ＫＢｒＯ３］、丙二酸［ＣＨ２（ＣＯＯＨ） ２］、硫
酸铈［Ｃｅ（ＳＯ４） ２］与硫酸的混合液中，生成物交替

出现红色和蓝色．１９６４ 年，扎博金斯基用锰或试亚

铁灵代替催化剂铈，从而发现了著名的 Ｂ⁃Ｚ 振荡反

应［１］ ．１９７３ 年，Ｒｕｅｌｌｅ 首次在化学反应中发现浓度

随着时间做不规则的非周期变化［４］ ．迄今为止，已
经在 Ｂ⁃Ｚ 反应体系等许多化学反应体系中发现了

化学混沌．
随着对混沌的不断探索与深入研究，混沌控制

也成为广大学者研究的热点之一［５－８］ ．１９８９ 年胡伯

勒（Ａ．Ｈｕｂｌｅｒ）首次提出混沌可以被控制，次年，奥
特（Ｅ．Ｏｔｔ）等通过参数微扰法（ＯＧＹ 法）成功控制

了混沌．近年来，混沌控制已经被广泛应用到通信

加密、神经网络、计算机等众多领域［９，１０］ ．然而，关
于化学混沌控制方面的研究相对较少，因此，对
Ｗｉｌｌａｍｏｗｓｋｉ⁃Ｒöｓｓｌｅｒ 化学系统［９］的控制与同步研究

对提高化学反应催化性能、改善混合过程等具有重

要意义．
本文在前人工作的基础上，结合现代非线性分

析方法分析 Ｗｉｌｌａｍｏｗｓｋｉ⁃Ｒöｓｓｌｅｒ 模型复杂的动力

学机理，对其动力学行为进行详细的仿真模拟．通
过自适应控制［１１，１２］及非线性控制方法使其无量纲

系统［１３，１４］稳定到了平衡点处，采用驱动⁃响应方法

对该系统实现了全局指数同步［１５－１８］，最后通过数

值仿真验证其有效性．

１　 Ｗｉｌｌａｍｏｗｓｋｉ⁃Ｒöｓｓｌｅｒ 系统简介

Ｗｉｌｌａｍｏｗｓｋｉ 和 Ｒöｓｓｌｅｒ 第一次提出由化学反应

机理产生的化学混沌模型，可由如下动力学方程描

述：
ｄｘ
ｄｔ

＝ ｋ１ｘ－ａｘ２－ｋ２ｘｙ＋ｂｙ２－ｋ４ｘｚ＋ｄ

ｄｙ
ｄｔ

＝ ｋ２ｘｙ－ｂｙ２－ｋ３ｙ＋ｃ

ｄｚ
ｄｔ

＝ －ｋ４ｘｚ＋ｋ５ｚ－ｅｚ２＋ｄ
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（１．１）
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式中 ｋｉ 为大于零的常数，表示反应速率．该化学反

应体系存在的复杂动力学行为是由其内部反应机

理所决定，与实验所处条件及仪器误差无关．
牛宏在文献［９］中，取参数 ｋ１ ＝ ３０， ａ ＝ ０．２５，

ｋ２ ＝ １， ｂ ＝ １０－４， ｋ３ ＝ １０， ｃ ＝ １０－３， ｋ４ ＝ １， ｄ ＝ １０－３，
ｋ５ ＝ １６．５ 和 ｅ ＝ ０．５，仿真出了系统（１．１）三维相图

（如图 １），陈帝伊等学者在文献 ［ １４］ 中对系统

（１．１）的无量纲化模型进行了分析与仿真，均验证

了该系统混沌行为的存在性．在此基础上，本文研

究了当反应速率 ｋ４ 变化时系统（１．１）的数值仿真

问题，仿真了系统（１．１）以倍周期分岔途径进入混

沌，再由混沌进入周期轨道的动力学行为．模拟了

系统发生分歧和混沌的全过程，同时实现了对系统

（１．１）的混沌控制与同步．

图 １　 系统（１．１）的三维相图

Ｆｉｇ．１　 Ｔｈｒｅｅ⁃ｄｉｍｅｎｓｉｏｎａｌ ｐｈａｓｅ ｄｉａｇｒａｍ ｏｆ ｍｏｄｅｌ （１．１）

２　 Ｗｉｌｌａｍｏｗｓｋｉ⁃Ｒöｓｓｌｅｒ 系统的动力学行为仿真

文献［９］和文献［１４］，只简单分析了系统（１．１）
混沌行为的存在性，并没有给出混沌发生的途径和

具体过程．在本节中，我们对系统（１．１）进行了更加

详细的数值模拟，固定参数 ｋ１ ＝ ３０， ａ ＝ ０．２５， ｋ２ ＝

１， ｂ＝ １０－４， ｋ３ ＝ １０， ｃ＝ １０－３， ｄ＝ １０－３， ｋ５ ＝ １６．５ 和 ｅ
＝ ０．５，仿真系统（１．１）在 ｋ４ 取不同值时的吸引子

图．同时给出了系统（１．１）的分岔图、最大李雅普指

数图、庞加莱截面、返回映射和功率谱，从不同角度

反映了系统（１．１）的混沌行为．下面我们对仿真结

果总结归纳如下：
（１）当 ｋ４ ＜０．５０８１…时，系统（１．１）是稳定的，

如图 ２（ａ） ．
（２）当 ｋ４ 增大到 ０．５０８１…时，系统（１．１）第一

次发生分岔，出现了图 ２（ｂ）所示的周期运动．

（３）当 ｋ４＜０．８６１６…时，系统（１．１）出现了倍周

期分岔，在 ｋ４ ＝ ０．９５１７…时再次出现了倍周期分

岔，随后 ｋ４ 在 ０．９７０２…， ０．９７４１５…， ０．９７４９９６…，
等处继续发生分岔，最终在 ｋ４ ＝ １ 时，系统（１．１）进
入混沌状态，表现为许多不规则轨迹．而

０．８６１６…－０．５０８１…
０．９５１７…－０．８６１６…

≈３．９２３４…，

０．９５１７…－０．８６１６…
０．９７０２…－０．９５１７…

≈４．８７０２…，

０．９７０２…－０．９５１７…
０．９７４１５…－０．９７０２…

≈４．６８３５…，

０．９７４１５…－０．９７０２…
０．９７４９９６…－１．９７４１５…

≈４．６６９０３…

可见系统 （ １． １） 分岔点的间隔比趋于极限

４．６６９２０１…，见图 ２（ｃ） ～ （ｆ） ．

图 ２　 倍周期分岔到达混沌

Ｆｉｇ．２　 Ｐｅｒｉｏｄ－ｄｏｕｂｌｉｎｇ ｂｉｆｕｒｃａｔｉｏｎｓ ｔｏ ｃｈａｏｓ

（４）图 ３（ａ）给出了系统（１．１）随 ｋ４ 变化的分

岔图，从分岔图可以看到系统进入混沌状态的全过

程，并且分岔图中的不稳定区间 ｋ４ ∈［０．８６１６…，
１．０３…］∪［１．１４７２…，１．１６６３］与图 ３（ｂ）中正的李

雅普指数区间是一致的．图 ４（ａ） ～ （ｃ）分别为 ｋ４ ＝ １
时系统（１．１）的庞加莱截面、返回映射和功率谱，图
中均显示了系统（１．１）的混沌特征．

６３
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图 ３　 系统（１．１）的分岔图（ａ）和最大 Ｌｙａｐｕｎｏｖ 指数图（ｂ）

Ｆｉｇ．３ Ｂｉｆｕｒｃａｔｉｏｎ ｄｉａｇｒａｍ （ａ） ａｎｄ ｍａｘ Ｌｙａｐｕｎｏｖ ｅｘｐｏｎｅｎｔ （ｂ）

ｏｆ ｔｈｅ ｍｏｄｅｌ （１．１）

（５）当 １．０３＜ｋ４＜１．１４７２…时，混沌突然消失，在
图 ４（ｄ）放大的分岔图中，可以看到系统（１．１）此时

进入周期状态．

图 ４　 系统（１．１）的庞加莱截面（ａ）、返回映射（ｂ）、

功率谱（ｃ）及放大的分岔图（ｄ）

Ｆｉｇ．４　 Ｐｏｉｎｃａｒｅ ｓｅｃｔｉｏｎ （ａ）， ｒｅｔｕｒｎ ｍａｐ （ｂ）， ｐｏｗｅｒ ｓｐｅｃｔｒｕｍ （ｃ）

ａｎｄ ｅｎｌａｒｇｅｄ ｂｉｆｕｒｃａｔｉｏｎ ｄｉａｇｒａｍ （ｄ） ｏｆ ｔｈｅ ｍｏｄｅｌ （１．１）

图 ５　 由混沌进入周期解的过程

Ｆｉｇ．５　 Ｐｒｏｃｅｓｓ ｆｒｏｍ ｃｈａｏｓ ｔｏ ｐｅｒｉｏｄｉｃ ｍｏｔｉｏｎｓ

（６）随后在 ｋ４ 到达 １．１４７２…时，系统再次进入

混沌状态，这是一种间接式混沌，见图 ５（ａ） ．
当 ｋ４ 继续增大，分别在 ｋ４ 等于 １．１７４５１６…，

１．１８１４…，１．２２４９…处，系统（１．１）由混沌状态逐渐

收缩成极限环，这是一个倒分岔过程，并且数值结

果表明其分岔点也满足费根鲍姆常数，如图 ５（ｂ）
～ （ｄ） ．

３　 Ｗｉｌｌａｍｏｗｓｋｉ⁃Ｒöｓｓｌｅｒ 系统的控制

３．１　 Ｗｉｌｌａｍｏｗｓｋｉ⁃Ｒöｓｓｌｅｒ 系统的自适应控制

为了方便起见，根据数量间的量级关系，将
（１．１）式转化为下面的无量纲方程组：

ｄｘ
ｄｔ

＝ ｋ１ｘ－ａｘ２－ｘｙ－ｘｚ

ｄｙ
ｄｔ

＝ ｘｙ－ｋ３ｙ

ｄｚ
ｄｔ

＝ －ｘｚ＋ｋ５－ｅｚ２

ì

î

í

ï
ï
ï
ï

ï
ï
ïï

（３．１）

其中 ａ＝ ０．０１，其它参数值与（１．１）式达到混沌状态

时的取值相同．通过计算，该系统有六个平衡点，分
别为：Ｐ１（０，０，５．７４４６），Ｐ２（０，０，－５．７４４６），Ｐ３（１０，

２８．３６７４，１．５３２６），Ｐ４（１０，５１．４３２６，－ ２１．５３２６），Ｐ５

（－１４．５２５３，０，３０．１４５３），Ｐ６（２９９９．４４９９，０，０．００５５） ．
根据自适应控制原理可得到系统（３．１）的受控

形式如下：
ｄｘ
ｄｔ

＝ ｋ１ｘ－ａｘ２－ｘｙ－ｘｚ－ｐ１（ｘ－ｘ０）

ｄｙ
ｄｔ

＝ ｘｙ－ｋ３ｙ－ｐ２（ｙ－ｙ０）

ｄｚ
ｄｔ

＝ －ｘｚ＋ｋ５－ｅｚ２－ｐ３（ ｚ－ｚ０）

ì

î

í

ï
ï
ï
ï

ï
ï
ïï

（３．２）

其中，（ｘ０，ｙ０，ｚ０）＝ （０，０，５．７４４６），当取 Ｐ１ ＝ ３０， Ｐ２

＝ ２０， Ｐ３ ＝ １０，时，通过计算可知受控系统（３．２）稳

定于平衡点 Ｐ１ ．

３．２　 Ｗｉｌｌａｍｏｗｓｋｉ⁃Ｒöｓｓｌｅｒ 系统的非线性反馈控制

为了方便讨论，作如下变换：

ｑ１ ＝ ｘ－ｘ

ｑ２ ＝ ｙ－ｙ

ｑ３ ＝ ｚ－ｚ

ì

î

í

ï
ï

ï
ï

（３．３）

其中（ｘ，ｙ，ｚ）为系统的平衡点．根据非线性反馈控

制原理得到系统（３．１）受控形式为：

７３
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ｑ̇１ ＝ －ａｑ２
１－ｑ１ｑ２－ｑ１ｑ３＋（ｋ１－２ａｘ－ｙ－ｚ）ｑ１－

　 　 ｘｑ２－ｘｑ３＋μ１

ｑ̇２ ＝ ｑ１ｑ２＋（ｘ－ｋ３）ｑ２＋ｑ１ｙ＋μ２

ｑ̇３ ＝ －ｅｑ２
３－ｑ１ｑ３－ｚｑ１－（２ｅｚ＋ｘ）ｑ３＋μ３

ì

î

í

ï
ï
ï

ï
ï
ï

（３．４）

构造一个径向无界的 Ｌｙａｐｕｎｏｖ 函数：

Ｖ＝ １
２
（ｑ２

１＋ｑ２
２＋ｑ２

３）

取 μ１ ＝ ｐ１ｑ１－ｑ２
２ －ｙｑ２ ＋ｑ２

３ ＋ｚｑ３ ＋ａｑ２
１，μ２ ＝ ｐ２ｑ２ ＋ｑ２

１ ＋ｘｑ１，

μ３ ＝ ｐ３ｑ３＋ｑ２
１＋ｅｑ２

３＋ｘｑ１ ． 当 ｐ１＜－ｋ１２ａｘ＋ｙ＋ｚ，ｐ２＜ｋ３＋ｘ，

ｐ３＜ｘ＋２ｅｚ，有 Ｖ̇＝ ｑ１ ｑ̇１＋ｑ２ ｑ̇２＋ｑ３ ｑ̇３＜０，则系统（３．４）在

任意平衡点 Ｐ（ｘ，ｙ，ｚ）处稳定．

４　 混沌控制的数值模拟

本节通过实验对所选控制器加以验证．这里仅

取不稳定平衡点 Ｐ１，其他平衡点可以类似考虑．对
于自适应控制，当 Ｐ１ ＝ ３０，Ｐ２ ＝ ２０，Ｐ３ ＝ １０ 时，系统

的相轨迹图如图 ６（ａ）所示，可以看到系统的周期

轨线被很好地控制在平衡点 Ｐ１ 处．对于非线性反

馈控制，当 Ｐ１ ＝ －４０，Ｐ２ ＝ ５，Ｐ３ ＝ ２ 时，系统的空间相

图如图 ６（ｂ）所示，其周期轨线也被很好地控制在

平衡点 Ｐ１ 处．

图 ６　 自适应控制（ａ）及非线性反馈控制（ｂ）下的系统相图

Ｆｉｇ．６　 Ｐｈａｓｅ ｄｉａｇｒａｍ ｏｆ ｔｈｅ ｓｙｓｔｅｍ ｆｏｒ ｓｅｌｆ－ａｄａｐｔｉｖｅ ｃｏｎｔｒｏｌ （ａ） ａｎｄ

ｎｏｎｌｉｎｅａｒ ｆｅｅｄｂａｃｋ ｃｏｎｔｒｏｌ （ｂ）

图 ７　 受控前系统（３．１）的时间历程图

Ｆｉｇ．７　 Ｔｉｍｅ ｈｉｓｔｏｒｙ ｏｆ ｔｈｅ ｍｏｄｅｌ （３．１） ｗｉｔｈｏｕｔ ｃｏｎｔｒｏｌ

系统（３．１）受控前 ｘ，ｙ，ｚ 的时间历程如图 ７ 所

示，系统显示出不稳定的运动状态．取控制时间 ｔ 为
５ｓ，初值 ｘ（０）＝ １０，ｙ（０）＝ ５，ｚ（０）＝ ２，对于自适应

控制，其受控后的时间历程图如图 ８（ａ）所示．由图

中可以看出，（ｘ，ｙ，ｚ）分别稳定到了（０，０，５．７４４６），
即系统（３．１）被控制到了平衡点 Ｐ１ 处．对于非线性

反馈控制，其受控后的时间历程图如图 ８（ｂ）所示．
由图中可以看到在 ｔ 接近 １ｓ 时，系统（３．１）也被控

制到平衡点 Ｐ１ 处．

图 ８　 自适应（ａ）和非线性反馈控制（ｂ）下系统（３．１）的时间历程图

Ｆｉｇ．８　 Ｔｉｍｅ ｈｉｓｔｏｒｙ ｄｉａｇｒａｍ ｏｆ ｔｈｅ ｍｏｄｅｌ （３．１） ａｆｔｅｒ ｓｅｌｆ－ａｄａｐｔｉｖｅ
ｃｏｎｔｒｏｌ （ａ） ａｎｄ ｎｏｎｌｉｎｅａｒ ｆｅｅｄｂａｃｋ ｃｏｎｔｒｏｌ （ｂ）

５　 Ｗｉｌｌａｍｏｗｓｋｉ⁃Ｒöｓｓｌｅｒ 系统的同步问题

考虑系统（１．１）的同步问题，驱动系统的变量

用下标 １ 标注，响应系统的变量用下标 ２ 标注．则
驱动系统为：

ｄｘ１

ｄｔ
＝ ｋ１ｘ１－ａｘ２

１－ｋ２ｘ１ｙ１＋ｂｙ２
１－ｋ４ｘ１ｚ１＋ｄ

ｄｙ１

ｄｔ
＝ ｋ２ｘ１ｙ１－ｂｙ２

１－ｋ３ｙ１＋ｃ

ｄｚ１
ｄｔ

＝ －ｋ４ｘ１ｚ１＋ｋ５ｚ１－ｅｚ２１＋ｄ

ì

î

í

ï
ï
ï
ï

ï
ï
ï
ï

（５．１）

对应的响应系统表示为：
ｄｘ２

ｄｔ
＝ ｋ１ｘ２－ａｘ２

２－ｋ２ｘ２ｙ２＋ｂｙ２
２－ｋ４ｘ２ｚ２＋ｄ＋μ１

ｄｙ２

ｄｔ
＝ ｋ２ｘ２ｙ２－ｂｙ２

２－ｋ３ｙ２＋ｃ＋μ２

ｄｚ２
ｄｔ

＝ －ｋ４ｘ２ｚ２＋ｋ５ｚ２－ｅｚ２２＋ｄ＋μ３

ì

î

í

ï
ï
ï
ï

ï
ï
ï
ï

（５．２）

这里 μ１， μ２， μ３ 为要设计的控制函数．
由响应系统减去驱动系统可得到受控的误差

动力系统：
ｅ̇ｘ ＝ ｋ１ｅｘ－ａ（ｅ２ｘ＋２ｘ１ｅｘ）－ｋ２（ｅｘｅｙ＋ｘ１ｅｙ＋ｙ１ｅｘ）＋

　 　 ｂ（ｅ２ｙ＋２ｙ１ｅｙ）－ｋ４（ｅｘｅｚ＋ｘ１ｅｚ＋ｚ１ｅｘ）＋μ１

ｅ̇ｙ ＝ ｋ２（ｅｘｅｙ＋ｘ１ｅｙ＋ｙ１ｅｘ）－ｂ（ｅ２ｙ＋２ｙ１ｅｙ）－ｋ３ｅｙ＋μ２

ｅ̇ｚ ＝ －ｋ４（ｅｘｅｚ＋ｘ１ｅｚ＋ｚ１ｅｘ）＋ｋ５ｅｚ－ｅ（ｅ２ｚ ＋２ｚ１ｅｚ）＋μ３

ì

î

í

ï
ï
ï

ï
ïï

（５．３）

８３
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其中 ｅｘ ＝ ｘ２ －ｘ１，ｅｙ ＝ ｙ２ －ｙ１，ｅｚ ＝ ｚ２ －ｚ１ ．构造一个径向

无界的 Ｌｙａｐｕｎｏｖ 函数：
Ｖ＝ ｅ２ｘ＋ｅ２ｙ＋ｅ２ｚ

对于误差系统（５．３），当控制器取：
μ１ ＝ａｅ２ｘ＋２ａｘ１ｅｘ＋ｋ２ｅｘｅｙ＋ｋ２ｘ１ｅｙ＋ｋ２ｙ１ｅｘ－ｂｅ２ｙ－

　 　 ２ｂｙ１ｅｙ＋ｋ４ｅｘｅｚ＋ｋ４ｘ１ｅｚ＋ｋ４ｚ１ｅｘ－ｋｅｘ
μ２ ＝ －ｋ２ｅｘｅｙ－ｋ２ｘ１ｅｙ－ｋ２ｙ１ｅｘ＋ｂｅ２ｙ＋２ｂｙ１ｅｙ－ｋｅｙ
μ３ ＝ ｋ４ｅｘｅｚ＋ｋ４ｘ１ｅｚ＋ｋ４ｚ１ｅｘ＋ｅｅ２ｚ ＋２ｅｚ１ｅｚ－ｋｅｚ

ì

î

í

ï
ï
ï

ï
ïï

选取 ｋ＞３０，有 Ｖ̇＝ ２ｅ２ｘ ＋２ｅ２ｙ ＋２ｅ２ｚ ＜０，则误差系统（５．３）
的零解是全局指数稳定的，从而驱动系统（５．１）和
响应系统（５．２）是全局指数同步的．

６　 Ｗｉｌｌａｍｏｗｓｋｉ⁃Ｒöｓｓｌｅｒ 系统的同步仿真

我们利用 Ｒｕｎｇｅ⁃Ｋｕｔｔａ 算法来验证上面提出的

方法的有效性，驱动系统和响应系统的初值分别取

（ｘ１（０）， ｙ１ （０）， ｚ１ （０）） ＝ （１７，１４，２９）， （ ｘ２ （ ０），
ｙ２（０），ｚ２（０））＝ （２５，３６，２４）

对于选取的控制器，我们选取控制参数 ｋ ＝ ５０
作为系统的控制率，可以看出驱动系统（５．１）和响

应系统（５．２）很快达到了同步，同步误差很快趋于

０（见图 ９） ．

图 ９　 控制参数 ｋ＝ ５０ 下的同步

Ｆｉｇ．９　 Ｓｙｎｃｈｒｏｎｉｚａｔｉｏｎ ｗｈｅｎ ｋ＝ ５０

７　 总结

本文对 Ｗｉｌｌａｍｏｗｓｋｉ⁃Ｒöｓｓｌｅｒ 系统的动力学行

为进行了详细的数值仿真，仿真结果显示，当 ｋ４ ＜
０．５０８１…时系统处于稳定状态，当 ｋ４ ＝ ０．５０８１…时

作周期运动，当 ｋ４ ＝ ０．８６１６…时系统发生倍周期分

岔，ｋ４ ＝ ０．９５１７…时再次发生倍周期分岔，最终经由

倍周期分岔在 ｋ４ ＝ １ 时进入混沌．随后混沌消失，系
统进入周期状态，在 ｋ４ ＝ １．１４７２…处再次产生混沌

吸引子，当 ｋ４ 继续增大，系统由混沌状态逐渐收缩

成极限环．
采用自适应控制和非线性反馈控制的方法将

Ｗｉｌｌａｍｏｗｓｋｉ⁃Ｒöｓｓｌｅｒ 的无量纲系统控制在平衡点

处，通过理论和数值仿真验证了两种方法的可行

性．
采用驱动⁃响应的同步方法实现了混沌系统的

全局指数同步，并且给出了同步的条件，通过理论

分析和数值仿真表明了这些方法的有效性．
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