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Table 1 Modal parameters of the cantilever beam system

with lumped mass

Experimental Theoretical Damping ratio

Model frequency ( Hz) frequency ( Hz) (%)
1 6.0 6.1 1.13
2 46.5 46.5 0.38
3 140.0 139.8 0.16
4 278.9 285.0 0.16
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(a) Time-domain displacement response of the free end of the beam;

(b) Impact force; (c) Phase figure; (d) Poincare section



366 g o 5 OE M o R 2017 4F55 15 4
0.4
17 base base
_ cantilever | T 02 cantilever
g £
s <
=] 3
£ g 0
o =
- o
o 4
A a -02
-04
. - . - 250 255 260 265 270
250 255 260 265 270 Non-dimensional time
Non-dimensional time (a)
@ 0.4
2
03 I |
1.5
Z 0.2
.
& £ 01
2
05
0 -
NN | | _
P A MN g 0350 255 260 265 270
205 H i Non-dimensional time
250 255 260 265 270 ()
Non-dimensional time
(b) 5 34Hz SLHZER
— 100 = 100 (a) BMFRAIGOIREITIRIFER ; (b) RS
E E Fig. 5 34Hz Experimental results
g 0 z 0 e . .
2 3 o» (a) Displacement time response of the free end of the beam;
> -100 > -100 (b) Impacting force
-2 -1 0 1 -2 -1 0 1
Displacement[mm] Displacement[mm] 1
© @ base
— 05 cantilever
4 22Hs S5 H .
() BRFRR SRR, (b) REBES Eé
(e) MK (d) FElmskEmm £ 05
Fig. 4 Experimental results for 22Hz [ 1
(a) Time-domain displacement response of the free end of the beam;
(b) Impact force; (c) Phase figure; (d) Poincare section -1'%50 255 260 265 270
Non-dimensional time
gy V= « = 9 N (a)
GERLBUAR T B < LR B4 T LU AR 11Hz Oy 15
AR R GEA T BA W — R R AL R AR T
3 — 77 THI i A SERBATR A HE R iX — A AR 15 AN 1 1
i, A AR T RE IR T 2R 40 1Y T8 vy A o Z
L U, . N o 5 05
FAT S AZ AR e 2 556 Bt 8l A1 32 A8 1k i =
PRSIz By 13 22 [ AE AR 28722 A&l 10 B s 43 0 “'4'%'“
HI°A 19Hz, 20Hz, 21Hz, 23Hz 3 T i 17 1 41 & P""" 4 | : W
- N N 250 255 260 265 270
XTJ’ H:A rgl 4( C) EFI 22Hz B/‘J;FH Izgl y ﬂ kamﬁ/ﬂﬁ IEU%E?I\ Non-dimensional time
(b)

GER KA T R, HAT AR TR vl 5 n] BB X UE AR
LR R G T AL U R B 2 O i
SR, (E B ) 2 S BRI A R A AL B 73 R
N 1Hz, AR BEWLEE 31 5C T 58 28 3 O 40 i A2 1L
i

6 45Hz JiH64E
(a) BEEAR BB HTRN ; (b) flEE )
Fig. 6 Experimental results for 45Hz
(a) Time-domain displacement response of the free end of the beam;

(b) Impact force



554 1 BRSSO R A7 BB SRRl R G 3l 0 2 S T oY 367
1 1
base base
— 05 cantilever | | —_ 05 — cantilever | |
£ g
E 0 g 0
= s
E 05 E 05
2 g
B -] 7 -
a a
-15 -1.5
2 . . . " . . .
250 255 260 265 270 250 255 260 265 270
Non-dimensional time Non-dimensional time
@) (@)
5 5
4 4
= 3 3
Z Z
Q Q
£, £,
1 1
* pioibioioib il bbb

250 255 260 265 270

Non-dimensional time
(®

&7 12Hz SCE64%

(a) MBI I S 5 (b ) BEAEE T

(a) Time-domain displacement response of the free end of the beam

S 2
(SIS

Displacement[mm]
IS
o

0.6}

-0.8

Fig. 7 Experimental results for 12Hz

(b) Impact force

(=]

o
~

base
cantilever | |

250 255 260 265 270

Non-dimensional time
@

250 255 260 265 270

Non-dimensional time
®

8 33Hz SZURLER

(a) B RIS ISR 5 (b) BEAE T

(a) Time-domain displacement response of the free end of the beam

Fig .8 Experimental results for 33Hz

(b) Impact force

250 255 260 265 270
Non-dimensional time
®)
fl 9 48Hz SLERZE R
(a) B RAALRE I BRA I (b) 18 )
Fig. 9 Experimental results for 48Hz

5 (a) Time-domain displacement response of the free end of the beam;

(b) Impact force

@ 50 @ 50
E E
g g
z 0 Z 0
Q Q
2 =
> .50 > 250
-04-02 0 0.2 -04 -02 0 02
Displacement[mm] Displacement[mm]
(@) (b)
— — 100
E g
e IEI
= 2 0
Q Q
2 2
> >
-100
-0.5 0 0.5 -04-02 0 0204
Displacement[mm] Displacement[mm]
© (d)

P10 AN[RIAhh 52 g0 45 5 UL
(a) 19Hz SZER L5 RAE ; (b) 20Hz SCER L5 RAME
(¢)21Hz SSEZRANE ; (d) 23Hz SCIRAEHAIE
Fig. 10 Comparison of different experimental results
(a) Phase figure for 19Hz; (b) Phase figure for 20Hz;
(¢) Phase figure for 21Hz; (d) Phase figure for 23Hz

TIANRATE SR A R P R B T 7 — L85
TR B A AR 8 e R 5 e 11, 12 B

5



368 g 1 %

5 of W %

2017 5565 15 %

7R INERT 43 3R 100Hz, 111Hz 14 5L R 8 K st o7
FEFURHIRL, vl DA A& BRAE sk [a] 5 A% D R ] R oA BH & A9
aE25

0.2
0.15

cantilever
base

o
s

0.05 §

Displacement[mm]
(=]

-0.05 fifl

-0.1

3500 4000 4500
Non-dimensional time

(a)

0.3

cantilever
base

e
)

e
-

Displacement[mm]
(=]

'
e
-

-0.2 .
5500 6000 6500

Non-dimensional time
(b)
P11 S AR i (8 A R Sl
(a) 100Hz; (b) 111Hz
Fig. 11  Time-domain displacement response of the free end of the beam

(a) 100Hz;(b) 111Hz

i) @ 20
g 10 g
g £ o0
g 0 £z
3 3
g -10 ;» -20
-0.1 0 0.1 -0.2 0 0.2
Displacement[mm] Displacement[mm]
(a) (b)

12 MK (a)100Hz;(b) 111Hz
Fig. 12 Phase figure for (a) 100Hz and (b) 111Hz

BEAN , FRATTEE NSl 23R 45 T OB 7 25
P — P RS A 5 6Hz 1 7T4Hz BYTE L, 1] 3-
13(a),3-14(a) 70 3 0 PR E DL T 28 32K o fin
HREE RIEAE 7 DL R IR 20 6 0 1E 5% 5l S e (]
DR, 3 BV 2s BB, O 28 ] 1 1E 5% 33l
T ZR G I S B A B B 2 R A A )
BEARE 3 % ] o e 0 T % A i o 3 R 56 M [, &
HERAR 2P AR KL, & 3-13(b),3-14
(b) , FEMZERmE A 3-13(c) ,3-14(c) , BT
— SO R AR AR L, T LA B TR TR DG A A AE .

ZJr BT 75 58 AN () g oy 1B AR M 14 E
SIARTEBL , e T S iz B 8 A8 T T 2R i i o J3E Wiy
O IV 8 3 ot SR A8 ) R 3 4 2 20 A, L 11 Hz,
22Hz R ZERANIEL 15, BB LA B E
PO 200 o e, o A4 5 I Sl R 9 3 e AR IR 1] v
L E AL 2R R REBR i 1 JCBR A 8 B 1 v
AR S T TE AR, 7 I LA 01 3 X Iy A o i 8 2
UG R BA B A IR, ) DR b B A

N AHE.
% 50
=A
g
-g 0
% s . .
< 58 585 59 595 60
= af
8
5 2|
E:
§o
© sg 58.5 59 59.5 60
Y
& 2}
g
-g 0}
§ 2 H : :
8 ; ; ;
< 53 58.5 59 59.5 60
Time[s]
(a)
200 200

100

100

Velocity[mm/s]
(=]

—
o
S

Velocity[mm/s]
(=)

302 -1 0 1 32 -1 0 1
Displacement[mm] Displacement[mm]
(b) ©

[ 13 6Hz SLu 4%
(a) B GEAR i fin R BE | AR ), YAl A S
(b) FAEL; (o) PEmEHE
Fig. 13 Experimental results for 6Hz
(a) Time-domain acceleration response of the free end of the beam,

impact force and base excitation; (b)Phase figure; (c)Poincare section

HE— LA BT 13, 14 rh IR o mi 7 1 A 3
R VRS Z0E br | & IR 2 B ih 4k
A SEIERHE. N 16 FiR, Bl (a), (b) 4351 A4
JilBi % 6Hz 1 74Hz BY45 5, IRk 3 T ilf
(18 2 A AR AT Al By e 1o v B T S A AR A, B
WS IR S 58 gy B R ) i 26 50 bn
HH 0,,0,, 0, 57500 TCBR A 45 BB 258
= PUB A AR, 0] LA A ) R



&
~
&

RS BB R 05 9 IRBFE 369

Iy

[N

o
HON

Acceleration [m/sz]
Qo

585 59 595 60

(v
[

(=]
-

Contact force [N]

58 58.5 59 595 60

2

Acceleration[m/s)
o

'
()

58 525 % 395 60
Time[s]
(@)
Z 10 210
: £
> 0 > 0| o® %
g -10 g
-0.05 0 0.05 -0.05 0 0.05
Displacement[mm] Displacement[mm]
(b) ©

€ 14 74Hz 28045 5R
(a) R SRR i fIn R B2, AR ), Al P SRS
(b) MHE; (o) B
Fig. 14 Experimental results for 74Hz
(a) Time-domain acceleration response of the free end of the beam,

impact force and base excitation; (b) Phase figure; ( ¢) Poincare section

]

2

&

€

g

&

=1

o

2 N N N N

Pt 0 100 200 300 400 500
.g

2

&

€
g

L

o
E N N . N

0 100 200 300 400 500
Frequency [Hz]

15 DHEELER 11 H I B Sy 2635 ( 1) FT s g ()
Fig. 15 Power spectrum results
(top) Acceleration power spectrum for 11Hz;

(bottom) Impact force power spectrum

SRS A7 KN IR G B,
R S T W SR 5341 %
AESHIR 1 6 U AL W1 S0
AESE IR ERER AR (04— AR 2

Je X AR AN PR .

[

100
0
-100

-200
0

Force/dB magnitude Response/dB magnitud

400 500

Frequency [Hz]
(a)
]
% 100 T T T
@2 ©3 4
g of | [ [
g
3 -0 ! ' '
& | | |
2 ool .1 I .
o 0 100 200 300 400 500
Frequency [Hz]
g 100 — . .
2 @ P P,
b 0 | | |
€ | | |
g -w MM
3
g I
£ _mo 1 1 1 1
0 100 200 300 400 500
Frequency [Hz]
()

K16 ke R
(a) 6Hz A BE )84 (_B) 1 R3E (F)
(b) 74Hz I BE Dy 3485 (1) 1 s&E% ()
Fig. 16 Power spectrum results
(a) (top) acceleration power spectrum for 6Hz,
(bottom) impact force power spectrum;
(b) (top) acceleration power spectrum for 74Hz,

(bottom) impact force power spectrum

23 fliESHEHEFHEEERERTE
FEAEL SN 1 R G RIBFRH, BHTHE Hiz 3l
FEPEFAE 0 19— Fh T2 2 Lyapunov 8450015, &2
FIBARTE RGe TSE i —MoE B IrE BES TR
AL EARSBAR LR - 44 R BORE JBE BF- 24 Wi S5 A
(PR O T — 2D B0 UE AR S5 o B
TR T ] | AR SCHL XX — 5 EVE T TR i 25
XFFARLAME R G AR S iRl A
2B A ) Lyapunov 8 %0, 7T DA B K
Lyapunov $§ 802 5 K T2 M=l E & ELUUL ) Wr >k .
—ANIER Lyapunov $8 80, B E TE R G AHZS 0],
TCRWIIE ISR BB BE 2 2N 22 R R 2 G



370 g % 5 & 6 ¥ W

2017 5565 15 %

P TR A9 T AR 17T B B3 B 38 I DA SGR 31 vk i
PO R A H AR 0 SR T 8 B
K Lyapunov 85007772 LA Wolf J7 3k F/ N s =2 7
PR )z A e Ry 52 G X I ] 51
PR S ] A S5 5012k FH DA B P 5 12 6t 512 4 v 35
Sy Az 8 (11,33Hz) FRMEZ 3 (6, 74Hz) B [7]
FH) 4353315 T B K Lyapunov $8 %, % 1 3R il
1B BPREXS WG A RO A SCORIE R U S 5
TR R R B b T o7 AR T B i A NEUR
ZJE R LG A R 2400 i 2 A S T 3 A SR
*2 PR,
*2 ERLTEREEIUTEER

Table 2 Results of Lyapunov exponent

6Hz 74Hz 11Hz 33Hz
Wolf method 0.0690 0.0728 -0.0012  -0.0026
Small data method 0.0528 0.0713 -0.0278  -0.0097
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(a) Transfer function forl1Hz; (b) Transfer function for 6 Hz
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DYNAMIC EXPERIMENTAL INVESTIGATION OF
AN UNILATERAL IMPACTING CANTILEVER BEAM*

Zhu Yuan Zhang Lei Song Hanwen'
dCNnool o, erospace rLngineering an le echanics , ongji nersit , Dhangnat 5 ma
School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, Chi

Abstract Based on a simple model of a cantilever beam with unilateral collision, the nonlinear dynamics of the
beam under different frequencies of sinusoidal excitation is studied. The acceleration response of the free end of
the cantilever beam and the impact force are measured by accelerometers and forcing transducer, respectively.
Periodic, chaotic motions are also observed through the analysis of experimental results in time and frequency do-
main by Matlab software. It is also found of the mutation between different kinds of motions under different fre-
quencies excitation. The largest Lyapunov exponent is also calculated by the time data of chaotic motions re-
sponse. Furthermore, the transfer function between the the acceleration of the end of the cantilever beam and the
impact force in the chaotic responses are found to be similar with the frequency response function in the modal
test. The observation and results of this paper demonstrate the nonlinear dynamics motions, and provide a new ho-

rizon for the understanding of chaotic experimental results.

Key words nonlinear vibration, cantilever beam, unilateral impact, periodic motions, chaotic motions

Received 24 June 2016, revised 13 October 2016.
# The project supported by the National Natural Science Foundation of China(11272235)
F Corresponding author E-mail; hwsong@ tongji.edu.cn



