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DYNAMICAL BEHAVIORS OF A NEW HYPERCHAOTIC SYSTEM
AND ITS ADAPTIVE CONTROL AND SYNCHRONIZATION "

Wang Heyuan”  Yin Xia
(College of Sciences, Liaoning University of Technology, Jinzhou 121001, China)

Abstract This paper examines the hyperchaotic dynamical behaviors of a new chaotic system, and the numerical
simulation results of the adaptive control and synchronization problems of the hyperchaotic system with unknown
parameters are presented. The chaotic behaviors of the hyperchaotic system is investigated by detailed numerical
simulations results, such as phase portraits, Lyapunov exponents, bifurcation diagrams, and Poincaré sections,
power spectrum and return map. Base on the Lyapunov stability theory we derive the adaptive control law that the
trajectory of the hyperchaotic system with unknown parameters can be globally stabilized to an unstable equilibri-
um point of the uncontrolled system. In addition, the adaptive control law is also applied to achieve the state syn-
chronization of two identical hyperchaotic systems. Moreover, the simulation results eventually indicate the validi-

ty of the proposed techniques.
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