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新超混沌系统的动力学行为及自适应控制与同步∗

王贺元† 　 尹　 霞
（辽宁工业大学理学院， 锦州　 １２１００１）

摘要　 分析了一个新混沌系统的超混沌动力学行为，给出了这个未知参数的超混沌系统的自适应控制和同步

问题的数值模拟结果．运用相图、分岔图、Ｌｙａｐｕｎｏｖ 指数谱和庞加莱截面图，返回映射和功率谱等揭示了系统混

沌行为的普适特征，基于 Ｌｙａｐｕｎｏｖ 稳定性理论，采用自适应控制方法将系统的混沌运动控制到一个不稳定的

平衡点．此外，设计自适应控制律以实现超混沌系统的状态同步，仿真结果表明所提出的方法的有效性．

关键词　 超混沌系统，　 混沌控制，　 同步，　 Ｌｙａｐｕｎｏｖ 稳定性

ＤＯＩ：　 １０．６０５２ ／ １６７２⁃６５５３⁃２０１７⁃００２

引言

混沌系统是复杂的、类似于噪声的难以预测的

非线性确定性系统，对初始条件及其参数变化的高

度敏感性是它的一个显著特征，混沌广泛存在于物

理、化学、生物学、地质学，以及社会科学等各个学

科领域［１］ ．然而，除了特殊应用需要混沌的效果外，
在众多工程技术领域中需要改变混沌，因此，稳定

混沌系统到周期轨道或平衡点的控制问题被普遍

接受．
混沌同步是使两个混沌系统以同步的方式振

动，两个混沌系统的动力学行为当初始条件接近时

最终达到相同，第二个系统被第一个系统驱动．许多

结果已经展示了如何在一定条件下实现混沌同

步［２，３］ ． 同步混沌系统也有效地保证了创建安全的通

信系统［４－６］ ． 混沌系统的控制与同步在物理系统、激
光、等离子、电路、化学反应器、生态系统、生物系统

都有潜在应用，例如心肺相互作用、对帕金森病人的

大脑活动、太阳活动以及安全通信等方面均显示出

混沌控制与同步的应用潜力．由于这些潜在的应用

价值，在过去的几十年中科学家们一直致力于混沌

控制与同步方面的研究，因此，混沌控制与同步的各

种有效方法被陆续提出［１－１１］ ． 超混沌系统大多是非

严格反馈并不像只有一个正的 Ｌｙａｐｕｎｏｖ 指数的混

沌系统，超混沌系统具有多个正的 Ｌｙａｐｕｎｏｖ 指数，

这意味着，超混沌系统动力学在多个方向扩展，从
而形成比混沌系统更复杂的行为和丰富的动态．因
此，超混沌系统的控制与同步被认为比混沌系统的

控制与同步有更广泛的应用．基于此，研究人员一

直致力于实现超混沌控制与同步的目标［１２－２７］ ． 超

混沌的控制与同步提出了更多的挑战，因为他们比

混沌系统有更高的维度，表现出更复杂的动态，混
沌控制与同步中的有些方法已扩展到超混沌的控

制与同步领域，包括线性和非线性反馈控制与同

步［１３，１４，１８，１９，２４，２５］， 自适应控制与同步［１６，２７］， ｂａｃｋ⁃
ｓｔｅｐｐｉｎｇ 技术［１２，１７］，滞后控制与同步［２０，２１］，主动控

制［２２］，脉冲同步［２３］，滑模同步［２６］，及皮科拉–卡罗

尔法［２７］ ．尽管固有的自适应控制技术，如前面所讨

论的众多优点，在超混沌的控制与同步中的应用还

没有得到充分的研究，大多数混沌控制方法仍无法

实现超混沌系统的稳定和混沌跟踪［１７］ ．
本文中我们主要研究了一个不同于超混沌刘

系统［２８］的新超混沌系统的动力学行为和数值模拟

以及控制与同步问题， 我们工作的动机是探讨这

个新超混沌系统和超混沌刘系统的异同．这个新超

混沌系统的动力学行为和数值模拟以及控制和同

步问题还没有系统的研究过，根据李雅普诺夫稳定

性理论和自适应控制理论稳定超混沌系统到不稳

定平衡点， 实现两个超混沌系统之间的同步．论文

安排如下．在第二部分，我们描述了此超混沌系统
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的动力学行为， 给出了数值模拟结果． 第三节我们

研究新超混沌系统的稳定性， 第四节我们讨论超

混沌系统的同步， 第五节我们提供数值模拟结果，
最后一节是结论．

１　 新超混沌的动力学行为及其数值模拟

考虑如下超混沌刘系统［２８］

ｘ̇＝ ｌ（ｙ－ｘ）
ｙ̇＝ｍｘ－ｎｘｚ＋ｗ
ｚ̇＝ －ｐｚ＋ｈｘ２

ｗ̇＝ －ｑｘ

ì

î

í

ï
ïï

ï
ïï

（１）

其中 ｌ，ｍ，ｎ，ｐ，ｑ 和 ｈ 为常数参数． 文献［２８］给出

了超混沌刘系统，讨论了当 ｌ ＝ １０，ｍ＝ ４０，ｎ＝ １，ｐ＝ ２．
５，ｈ＝４，ｑ＝１０．６ 时系统的动力学行为． 本文研究了当

ｌ＝８， ｍ＝２５， ｎ ＝ ２，ｐ ＝ ４，ｈ ＝ ５ 时超混沌刘系统的动

力学行为和数值模拟以及自适应控制与同步问题．
对于 ｌ ＝ ８，ｍ＝ ２５，ｎ ＝ ２，ｐ ＝ ４，ｈ ＝ ５， 当 ｑ ＝ １８ 时系统

（１）有超混沌行为， 在平衡点 Ｅ０（０，０，０，０）， 系统

（１）被线性化，对应的 Ｊａｃｏｂｉａｎ 矩阵为：

Ｊ０ ＝

－８ ８ ０ ０
２５－２ｚ ０ －２ｘ １
１０ｘ ０ －４ ０
－１８ ０ ０ ０

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

Ｅ０

＝

－８ ８ ０ ０
２５ ０ ０ １
０ ０ －４ ０

－１８ ０ ０ ０

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

（２）
利用 λＩ－Ｊ０ ＝ ０， 得 Ｊａｃｏｂｉａｎ 矩阵 Ｊ０ 的特征值为：

λ１ ＝ －１８．９５３２
λ２ ＝ １０．２０９０
λ３ ＝ ０．７４４２
λ４ ＝ －４．０００ （３）

从（３）中我们看出有两个正的 Ｌｙａｐｕｎｏｖ 指数， 因

此， 系统（１）是超混沌系统， 并且 Ｅ０（０，０，０，０）是
不稳定平衡点． 这一段， 我们研究当 ｌ ＝ ８， ｍ ＝ ２５，
ｎ＝ ２，ｐ＝ ４，ｈ＝ ５ 时超混沌系统（１）的基本性质．
１．１　 耗散性

系统（１）流的散度
∂ｘ̇
ｘ

＋ ∂ｙ̇
ｙ

＋ ∂ｚ̇
ｚ
＋∂ｗ̇
ｗ

＝ － ｌ ＋０－ｐ ＝

－（ｌ＋ｐ）＜０，因此， 系统（１）是耗散系统，并且系统（１）

的指数收缩率为
ｄＶ
ｄｔ

＝ｅ－（ｌ＋ｐ）， 因此，体积元素 Ｖ 在时间

ｔ 内通过流收缩成一个体积元素 Ｖｅ－（ｌ＋ｐ） ．
１．２　 混沌行为和数值模拟

当 ｌ＝ ８，ｍ＝ ２５，ｎ＝ ２，ｐ＝ ４，ｈ ＝ ５ 时，系统（１）蕴
含着丰富复杂的混沌动力学行为，图 １ ～ ８ 展示了

系统（１）的各种吸引子．图 ９ 是 ｑ 变化时状态变量 ｘ
的分岔图，图 １０ 是对应的最大 Ｌｙａｐｕｎｏｖ 指数．图
１１，１２ 显示了不同 ｑ 值下系统（１）庞加莱映射，图
１３ 是返回映射，图 １４ 是功率谱，他们均表明了系

统（１）混沌特征．从分岔图 ９ 我们发现混沌区内有

变化很宽的拟周期轨道窗口，吸引环面、拟周期轨

道和极限周期在不同的 ｑ 值交替出现，图 ５，６，８ 给

出了几个准周期状态．

图 １　 奇怪吸引子（ｑ＝－５０）

Ｆｉｇ．１　 Ｓｔｒａｎｇｅ ａｔｔｒａｃｔｏｒｓ（ｑ＝－５０）

图 ２　 奇怪吸引子（ｑ＝－１）

Ｆｉｇ．２　 Ｓｔｒａｎｇｅ ａｔｔｒａｃｔｏｒｓ（ｑ＝－１）

图 ３　 奇怪吸引子（ｑ＝－０．５）

Ｆｉｇ．３　 Ｓｔｒａｎｇｅ ａｔｔｒａｃｔｏｒｓ（ｑ＝－０．５）

图 ４　 奇怪吸引子（ｑ＝１０）

Ｆｉｇ．４　 Ｓｔｒａｎｇｅ ａｔｔｒａｃｔｏｒｓ（ｑ＝１０）

图 ５　 吸引环面（ｑ＝３５）

Ｆｉｇ．５　 Ａｔｔｒａｃｔｉｎｇ ｔｏｒｕｓ（ｑ＝３５）

图 ６　 拟周期轨道（ｑ＝５５）

Ｆｉｇ．６　 Ｑｕａｓｉ⁃ｐｅｒｉｏｄｉｃ ｏｒｂｉｔ（ｑ＝５５）

图 ７　 周期轨道（ｑ＝５６．４）

Ｆｉｇ．７　 Ｐｅｒｉｏｄｉｃ ｏｒｂｉｔ（ｑ＝５６．４）

图 ８　 拟周期轨道（ｑ＝１０５）

Ｆｉｇ．８　 Ｑｕａｓｉ⁃ｐｅｒｉｏｄｉｃ ｏｒｂｉｔ（ｑ＝１０５）

６３３
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图 ９　 ｑ 变化时状态变量 ｘ 的分岔图

Ｆｉｇ． ９　 Ｂｉｆｕｒｃａｔｉｏｎ ｄｉａｇｒａｍ ｏｆ ｘ ｗｉｔｈ ｉｎｃｒｅａｓｉｎｇ ｑ

图 １０　 最大 Ｌｙａｐｕｎｏｖ 指数

Ｆｉｇ． １０　 Ｍａｘｉｍｕｍ Ｌｙａｐｕｎｏｖ ｅｘｐｏｎｅｎｔｓ

图 １１　 庞加莱映射（ｑ＝－５）

Ｆｉｇ． １１　 Ｐｏｉｎｃａｒｅ ｍａｐ（ｑ＝－５）

图 １２　 庞加莱映射 （ｑ＝ １２０）

Ｆｉｇ． １２　 Ｐｏｉｎｃａｒｅ ｍａｐ （ｑ＝ １２０）

图 １３　 返回映射（ｑ＝ ８）

Ｆｉｇ． １３　 Ｒｅｔｕｒｎ ｍａｐ（ｑ＝ ８）

图 １４　 功率谱（ｑ＝ ８）

Ｆｉｇ． １４　 Ｐｏｗｅｒ ｓｐｅｃｔｒｕｍ（ｑ＝ ８）

这些结果表明新超混沌系统的动力学行为与

超混沌刘系统非常不同，因此，这个超混沌系统的

控制与同步问题尤为重要．

２　 超混沌系统的稳定

为了控制带有未知参数的超混沌系统稳定到

不稳定的平衡点 Ｅ０，让我们假设的超混沌系统（１）
的动力学方程如下：

ｘ̇＝ ｌ（ｙ－ｘ）
ｙ̇＝ｍｘ－ｎｘｚ＋ｗ＋ｕ１

ｚ̇＝ －ｐｚ＋ｈｘ２＋ｕ２

ｗ̇＝ －ｑｘ＋ｕ３

ì

î

í

ï
ïï

ï
ïï

（４）

这里 ｌ，ｍ，ｎ，ｐ，ｑ 和 ｈ 是未知参数， ｕ１，ｕ２，ｕ３ 是设

计的控制器．
我们选择如下的 Ｌｙａｐｕｎｏｖ 函数：

Ｖ＝ １
２
（ｘ２＋ｙ２＋ｚ２＋ｗ２＋ ｌ

～ ２＋ｍ～ ２＋ｎ～ ２＋ｐ～ ２＋ｑ～ ２＋ｈ
～ ２）

其中 ｌ
～ ＝ ｌ^－ｌ，ｍ～ ＝ ｍ^－ｍ，ｎ～ ＝ ｎ^－ｎ，ｐ～ ＝ ｐ^－ｐ，ｑ～ ＝ ｑ^－ｑ，ｈ

～ ＝
ｈ^－ｈ，ｌ^，ｍ^，ｎ^，ｐ^，ｑ^，ｈ^ 是这些未知参数的估计值．

Ｖ 沿系统（４）的轨线关于时间的导数为：
Ｖ· ＝ ｘｌ（ｙ－ｘ）＋ｙ（ｍｘ－ｎｘｚ＋ｗ＋ｕ１）＋

ｚ（－ｐｚ＋ｈｘ２＋ｕ２）＋ｗ（－ｑｘ＋ｕ３）＋

ｌ
～
ｌ^
·
＋ｍ～ ｍ^·＋ｎ～ ｎ^·＋ｐ～ ｐ^·＋ｑ～ ｑ^·＋ｈ

～
ｈ^
·

７３３
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＝（ ｌ^＋ｍ^）ｘｙ－（ ｌ
～＋ｍ～ ）ｘｙ－ｘ２－（ ｌ^－１）ｘ２＋

ｌ
～
ｘ２－ｎ^ｘｙｚ－ｙ２－ｗ２＋ｎ～ ｘｙｚ＋ｙｗ＋ｙｕ１－

ｚ２－（ ｐ^－１） ｚ２＋ｐ～ ｚ２＋ｈ^ｚｘ２－ｈ
～
ｚｘ２＋ｙ２＋

ｗ２＋ｚｕ２－ｑ^ｗｘ＋ｑ～ｗｘ＋ｗｕ３＋ ｌ
～
ｌ^
·
＋ｍ～ ｍ^·＋

ｎ～ ｎ^·＋ｐ～ ｐ^·＋ｑ～ ｑ^·＋ｈ
～
ｈ^
·

＝ ｌ
～
（ ｌ^

·
＋ｘ２－ｘｙ）＋ｍ～ （ｍ^·－ｘｙ）＋ｎ～（ ｎ^·＋ｘｙｚ）＋

ｐ～（ ｐ^·＋ｚ２）＋ｈ
～
（ ｈ^

·
－ｚｘ２）ｑ～（ ｑ^·＋ｗｘ）＋

ｙ ｕ１－ｎ^ｘｚ－
（ ｌ^－１）ｘ２

ｙ
＋（ｍ^＋^ｌ）ｘ＋ｙé

ë
êê

ù

û
úú ＋

ｚ ｕ２＋ｈ^ｘ２－（ｐ^－１）ｚ[ ] ＋ｗ（ｕ３－ｑ^ｘ＋ｗ＋ｙ）－

ｘ２－ｙ２－ｚ２－ｗ２ （５）
控制器 ｕ１，ｕ２，ｕ３选择如下：

ｕ１ ＝ ｎ^ｘｚ＋
（ ｌ^－１）ｘ２

ｙ
－（ｍ^＋ｌ^）ｘ－ｙ

ｕ２ ＝ －ｈ^ｘ２＋（ ｐ^－１） ｚ
ｕ３ ＝ ｑ^ｘ－ｗ－ｙ （６）

并且下列参数估计校正：

Ｉ
·^
＝ －ｘ２＋ｘｙ－ ｌ

～
，ｍ^· ＝ ｘｙ－ｍ～ ，ｎ^·＝ －ｘｙｚ－ｎ～，

ｐ^·＝ －ｚ２－ｐ～，ｈ^
·
＝ ｚｘ２－ｈ

～
，ｑ^·＝ －ｗｘ－ｑ～ （７）

Ｌｙａｐｕｎｏｖ 函数 Ｖ 关于时间的导数变为：

Ｖ·＝ －ｘ２－ｙ２－ｚ２－ｗ２－ ｌ
～ ２－ｍ～ ２－ｎ～ ２－ｐ～ ２－ｈ

～ ２－ｑ～ ２＜０
显然在系统（４）零解的邻域内 Ｖ 是正定的，并

且 Ｖ· 负定的，因此， 基于 Ｌｙａｐｕｎｏｖ 稳定性理论， 利

用控制器（６）和参数估计校正律（７），控制系统（４）
能渐近收敛到不稳定平衡点 Ｅ０（０，０，０，０） ．

３　 超混沌系统的同步

这一部分，基于 Ｌｙａｐｕｎｏｖ 稳定性理论和自适应

控制理论，我们实现两个相同具有未知参数的超混

沌系统之间的同步．驱动系统和响应系统分别如下：
ｘ̇１ ＝ ｌ（ｙ１－ｘ１）

ｙ̇１ ＝ｍｘ１－ｎｘ１ｚ１＋ｗ１

ｚ̇１ ＝ －ｐｚ１＋ｈｘ１
２

ｗ̇１ ＝ －ｑｘ１

ì

î

í

ï
ï
ï

ï
ï
ï

（８）

ｘ̇２ ＝ ｌ１（ｙ２－ｘ２）＋ｕ１

ｙ̇２ ＝ｍ１ｘ２－ｎ１ｘ２ｚ２＋ｗ２＋ｕ２

ｚ̇２ ＝ －ｐ１ｚ２＋ｈ１ｘ２
２＋ｕ３

ｗ̇２ ＝ －ｑ１ｘ２＋ｕ４

ì

î

í

ï
ï
ï

ï
ï
ï

（９）

其中 ｌ，ｍ，ｎ，ｐ，ｑ，ｈ 是驱动系统的未知参数， ｌ１，ｍ１，
ｎ１，ｐ１，ｑ１，ｈ１ 是响应系统需要估计的未知参数， ｕ１，
ｕ２，ｕ３ 和 ｕ４ 是设计使得两个超混沌系统相互同步

的控制器．
响应系统（９）减驱动系统（８）得到下列误差系统：

ｅ̇１ ＝ ｌ
～
（ｙ２－ｘ２）＋ｌ（ｅ２－ｅ１）＋ｕ１

ｅ̇２ ＝ｍ～ ｘ２＋ｍｅ１－ｎ～ ｘ２ｚ２－ｎｘ２ｅ３－ｎｚ１ｅ１＋ｅ４＋ｕ２

ｅ̇３ ＝ －ｐ～ ｚ２－ｐｅ３＋ｈ
～
ｘ２

２＋ｈｘ２
２－ｈｘ１

２＋ｕ３

ｅ̇４ ＝ －ｑ～ｘ２－ｑｅ１＋ｕ４

ì

î

í

ï
ï
ï

ï
ï
ï

（１０）

其中 ｅ１ ＝ ｘ２－ｘ１，ｅ２ ＝ ｙ２ －ｙ１，ｅ３ ＝ ｚ２ －ｚ１，ｅ４ ＝ ｗ２ －ｗ１，并

且 ｌ
～ ＝ ｌ１－ｌ，ｍ～ ＝ｍ１－ｍ，ｎ～ ＝ｎ１－ｎ，ｐ～ ＝ ｐ１－ｐ，ｑ～ ＝ ｑ１－ｑ，ｈ

～ ＝
ｈ１－ｈ．

控制目标是找到方程（１０）的控制器和参数估

计校正律，使得驱动系统和响应系统的彼此状态达

到全局渐近同步，我们得到如下结论．
定理　 构造自适应控制器

ｕ１ ＝ －ｌｅ２＋（ ｌ－１）ｅ１
ｕ２ ＝ －ｍｅ１＋ｎｘ２ｅ３＋ｎｚ１ｅ１－ｅ４－ｅ２
ｕ３ ＝（ｐ－１）ｅ３－ｈｘ２

２＋ｈｘ１
２

ｕ４ ＝ ｑｅ１－ｅ４

ì

î

í

ï
ïï

ï
ïï

（１１）

其中 ｌ
～ ＝ ｌ１－ｌ，ｍ～ ＝ｍ１－ｍ，ｎ～ ＝ ｎ１－ｎ，ｐ～ ＝ ｐ１－ｐ，ｑ～ ＝ ｑ１－ｑ，

ｈ
～ ＝ｈ１－ｈ， 和如下参数估计校正律：

ｌ̇１ ＝ －（ｙ２－ｘ２）ｅ１－ ｌ
～

ｍ̇１ ＝ －ｘ２ｅ２－ｍ～

ｎ̇１ ＝ ｘ２ｚ２ｅ２－ｎ～

ｐ̇１ ＝ ｚ２ｅ３－ｐ～

ｈ̇１ ＝ －ｘ２
２ｅ３－ｈ

～

ｑ̇１ ＝ ｘ２ｅ４－ｑ～

ì

î

í

ï
ï
ï
ïï

ï
ï
ï
ïï

（１２）

则驱动系统（８）和响应系统（９）将全局同步．
证明　 选择下列 Ｌｙａｐｕｎｏｖ 函数：

Ｖ＝ １
２
（ｅ１ ２＋ｅ２ ２＋ｅ３ ２＋ｅ４ ２＋ ｌ

～ ２＋ｍ～ ２＋ｎ～ ２＋ｐ～ ２＋ｈ
～ ２＋ｑ～ ２），

Ｌｙａｐｕｎｏｖ 函数沿方程（１０）的解关于时间的导数为：

Ｖ· ＝ ｅ１ ｅ̇１＋ｅ２ ｅ̇２＋ｅ３ ｅ̇３＋ｅ４ ｅ̇４＋ ｌ
～
ｌ
～·＋ｍ～ ｍ～·＋ｎ～ ｎ～·＋

ｐ～ ｐ～·＋ｈ
～
ｈ
～·＋ｑ～ ｑ～·

＝ ｅ１ ｌ
～
（ｙ２－ｘ２）＋ｌ（ｅ２－ｅ１）＋ｕ１[ ] ＋

ｅ２ ｍ～ ｘ２＋ｍｅ１－ｎ～ｘ２ｚ２－ｎｘ２ｅ３－ｎｚ１ｅ１＋ｅ４＋ｕ２[ ] ＋

ｅ３ －ｐ～ｚ２－ｐｅ３＋ｈ
～
ｘ２

２＋ｈｘ２
２－ｈｘ１

２＋ｕ３[ ] ＋

ｅ４ －ｑ～ｘ２－ｑｅ１＋ｕ４[ ] ＋ ｌ
～
ｌ̇１＋ｍ～ ｍ̇１＋ｎ～ ｎ̇１＋

ｐ～ ｐ̇１＋ｈ
～
ｈ̇１＋ｑ～ ｑ̇１ （１３）

８３３
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把（１１）和（１２）代入（１３） 得：

Ｖ·＝ －ｅ１ ２－ｅ２ ２－ｅ３ ２－ｅ４ ２－ ｌ
～ ２－ｍ～ ２－ｎ～ ２－ｐ～ ２－ｑ～ ２－ｈ

～ ２＜０

类似的， 由于 Ｖ 为正定函数，Ｖ· 负定的， 在控

制器（１１）和参数估计校正律（１２）下，驱动系统（８）
和响应系统（９）将达到全局渐近同步．

４　 数值模拟

这一部分，我们采用四阶龙格⁃库塔方法给出

了一些数值算例，以验证所提出方法的有效性． 在

数值模拟中， 时间步长取 ０．００１， 参数选择 ｌ ＝ ８，
ｍ＝ ２５，ｎ＝ ２，ｐ ＝ ４，ｈ ＝ ５，ｑ ＝ １８ 以确保超混沌系统

（１）存在混沌．
算例 １　 控制超混沌系统（１）到平衡点 Ｅ０（０，０，０，０）

在图 １５ 中我们注意到系统（１）的状态变量 ｘ，
ｙ， ｚ， ｗ 是不稳定的， 但是当施加控制器 Ｕ ＝
ｕ１ ｕ２ ｕ３[ ] Ｔ， 图 １６ 显示混沌系统在初始条件（ｘ

（０），ｙ（０），ｚ（０），ｗ（０））＝ （２，２，２，－２）很快驱使到

原点， 而且误差估计为（ ｌ
～
（０），ｍ～ （０），ｎ～ （０），ｐ～（０），

ｈ
～
（０），ｑ～（０））＝ （０，０，０，０，０，０） ． 同时， 在图 １７ 中

我们能看到当 ｔ→∞时控制器是有界的．

图 １５　 不施加控制器 Ｕ 系统（１）的状态变量 ｘ，ｙ，ｚ，ｗ 的变化状态

Ｆｉｇ． １５　 Ｓｔａｔｅ ｏｆ ｖａｒｉａｂｌｅ ｘ，ｙ，ｚ，ｗｏｆ ｔｈｅ ｓｙｓｔｅｍ （１）

ｗｉｔｈｏｕｔ ｃｏｎｔｒｏｌ ｌａｗ Ｕ

图 １６　 状态变量（ｘ，ｙ，ｚ，ｗ）的时间响应

Ｆｉｇ． １６　 Ｔｉｍｅ ｈｉｓｔｏｒｙ ｏｆ ｔｈｅ ｓｔａｔｅｓ （ｘ，ｙ，ｚ，ｗ）

图 １７　 控制器作用 ｕ１（ ｔ），ｕ２（ ｔ），ｕ３（ ｔ） 稳定平衡在 Ｅ０

Ｆｉｇ． １７　 Ｓｔａｂｉｌｉｚｉｎｇ ｅｑｕｉｌｉｂｒｉｕｍ ａｔ Ｅ０ ｏｆ ｃｏｎｔｒｏｌ ａｃｔｉｏｎｓ

ｕ１（ ｔ），ｕ２（ ｔ），ｕ３（ ｔ）

算例 ２　 参数未知的超混沌系统的自适应同步

在这个例子的数值模拟中，我们考虑方程（８）和
（９）给出的系统．驱动系统和响应系统的初始条件取

为（ｘ１（０），ｙ１（０），ｚ１（０），ｗ１（０））＝ （－１，－１，－１，－１），
（ｘ２（０），ｙ２（０），ｚ２（０），ｗ２（０））＝ （１，１，１，１） ． 因此初始

误差为 ｅ１（０）＝ ２，ｅ２（０）＝ ２，ｅ３（０）＝ ２，ｅ４（０）＝ ２， 不

确定的参数选为 （ ｌ１ （０），ｍ１ （０）， ｎ１（０）， ｐ１ （ ０），
ｈ１（０），ｑ１（０））＝ （８，２５，２，４，５，１８） ．图 １８ ～ ２０ 显示

了数值模拟结果，图 １８ 显示了驱动系统和响应系

统的时间演化， 从中我们可以看出起始于不同条

件的两个超混沌系统是相互同步的．定义同步误差

ｅ（ ｔ）＝ ｅ１ ２（ ｔ）＋ｅ２ ２（ ｔ）＋ｅ３ ２（ ｔ）＋ｅ４ ２（ ｔ） ，图 １９ 显示了

其时间演化，显然误差信号渐近收敛于零． 图 ２０ 显

示了当 ｔ→∞ 参数时， ｌ１（ ｔ），ｍ１（ ｔ），ｎ１（ ｔ），ｐ１（ ｔ），
ｈ１（ ｔ），ｑ１（ ｔ）的估计值． 我们能看到当ｔ→∞ 时不确

定参数的估计值收敛于 ｌ＝ ８，ｍ＝ ２５，ｎ ＝ ２，ｐ ＝ ４，ｈ ＝
５，ｑ＝ １８．

图 １８　 驱动系统和响应系统的状态变量的状态轨线

Ｆｉｇ． １８　 Ｓｔａｔｅ ｔｒａｊｅｃｔｏｒｉｅｓ ｏｆ ｓｔａｔｅ ｖａｒｉａｂｌｅｓ ｆｏｒ ｄｒｉｖｅ ｓｙｓｔｅｍ

ａｎｄ ｒｅｓｐｏｎｓｅ ｓｙｓｔｅｍ

９３３
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图 １９　 关于时间 ｔ 的误差 ｅ（ ｔ）

Ｆｉｇ． １９　 Ｔｉｍｅ ｈｉｓｔｏｒｙ ｏｆ ｅｒｒｏｒ ｅ（ ｔ）

图 ２０　 关于时间 ｔ 的参数估计

Ｆｉｇ． ２０　 Ｔｉｍｅ ｈｉｓｔｏｒｙ ｏｆ ｐａｒａｍｅｔｅｒ ｅｓｔｉｍａｔｉｏｎ

５　 结论

本文讨论了一个参数未知的新超混沌系统的

动力学行为和数值模拟以及自适应控制与同步问

题．基于相图，分岔图、Ｌｙａｐｕｎｏｖ 指数谱、庞加莱截

面、功率谱和回归映射，在理论上和数值上研究了

该混沌系统参数 ｑ 一定范围内的动力学行为，实现

了超混沌系统稳定到不稳定的平衡点．此外，基于

Ｌｙａｐｕｎｏｖ 稳定性理论和自适应控制理论实现了两

个相同的超混沌系统之间的同步．由于超混沌系统

具有复杂的动力学行为，因此，通过自适应控制技

术实现的超混沌系统同步是有实际意义的．
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