径向加强肋-薄膜伞状天线结构动力学建模 与数值仿真^{*}

李东颖^{1,2†} 张华^{1,2} 刘汉武^{1,2}

(1. 上海市空间飞行器机构重点实验室, 上海 201108) (2. 上海宇航系统工程研究所, 上海 201109)

摘要 大型空间可展开抛物面天线由于其特殊的应用价值,近年来广受人们关注.本文研究的径向加强肋-薄膜伞状天线是其中一种典型的非线性结构系统,为了掌握其在轨动力学特性,合理精确地建立径向加强 肋-薄膜伞状天线的结构动力学模型至关重要.为描述径向加强肋-薄膜伞状天线物理模型中的预紧力问题, 引入温度预应力等效方法解决天线结构模态的初始条件施加问题,通过有限元求解获得了其动力学特性, 为径向加强肋-薄膜伞状天线的结构设计与力学研究提供了依据,并为其工程化实施奠定了理论研究基础.

关键词 径向加强肋, 预紧力, 天线结构, 有限元

DOI: 10.6052/1672-6553-2016-045

引言

随着深空探测、资源勘探、天文观测、军事侦察、能量传输等应用领域的不断发展,对大型空间 天线的需求与日俱增,对其各项技术指标的要求也 越来越高,大口径、轻质量、高精度的天线成为了研 究的热点^[1].但受航天运载工具空间的限制,天线 在发射阶段须折叠收起,并藏于整流罩内,这种形 式已经成为现代星载天线的一个显著特征^[2].

径向加强肋天线(Radial Stiffening Rib Antenna)是一种空间可展开薄膜天线,如下图1所示.具 有结构简单、展开可靠性高、大收缩比、单位面积质 量小的特点^[3-4].由金属薄膜构成的反射面是一 种由特殊材料张紧的结构形式,具有明显的非线性 特征^[5].由于地面重力、空气阻力的影响,该类大型 可展结构很难开展地面动力学测试试验,动力学仿 真分析成为获得其动力学性能的必要手段.如何模 拟该薄膜结构的力学特性,建立精确的有限元模 型,是开展径向加强肋-薄膜伞状天线结构振动特 性仿真分析和准确获取航天器整器振动模态的前 提^[6].采用板壳单元模拟了金属薄膜,考虑了张力 的影响,采用变截面复合材料梁单元模拟了径向加

2016-01-23 收到第1稿,2016-08-23 收到修改稿.

*上海市自然科学基金资助(16ZR1436200)

†通讯作者 E-mail:lidongying917@163.com

强肋结构,建立了径向加强肋-薄膜伞状天线展开 状态有限元模型,并对径向加强肋-薄膜伞状天线 展开状态进行了动力学分析,计算得到了展开状态 的模态特性,为径向加强肋-薄膜伞状天线的结构 设计跟力学研究提供了依据.

图 1 径向加强肋-薄膜伞状天线 Fig. 1 Radial stiffening rib-membrane umbrella antenna

1 动力学方程

1.1 初始状态预应力平衡方程

合理确定初始形状和相应的自平衡预应力系统,建立薄膜结构的初始状态预应力平衡方程,是建 立薄膜结构理论模型的关键^[7-8].对于薄膜结构,一

图 2 薄膜拓扑模型 Fig. 2 Model of membrane topology

节点 *i* 在 *k* 节点方向的力平衡方程式为^[9]:

$$\sum_{n=1}^{N_i} \frac{x_k^i - x_k^{i_n}}{L_n} T_n = P_k^i$$
(1)

其中,*i*,*i*,分别是薄膜单元*n*的两个节点号,*N*_n是 相交于节点*i*的薄膜单元数;*T*_n,*L*_n是薄膜单元*n* 的内力和长度,*P*^{*i*}_{*k*}是施加于节点*i*的*k*方向的外 力.对于薄膜结构中所有节点都列出上述力平衡方 程,则可表示如下:

$$\begin{bmatrix} C_{s} \operatorname{diag}(C_{s}^{T}x) \\ C_{s} \operatorname{diag}(C_{s}^{T}y) \\ C_{s} \operatorname{diag}(C_{s}^{T}z) \end{bmatrix} q = \begin{bmatrix} p_{sx} \\ p_{sy} \\ p_{sz} \end{bmatrix}$$
(2)

式中,x、y、z 表示节点坐标列向量,q_n 称为单元力 密度,其定义为:

$$q_n = \frac{T_n}{L_n} \tag{3}$$

式中 C_s 为表示薄膜结构拓扑连接关系的 n × m 阶 矩阵, m 为薄膜单元数, 其构成如下:

$$C_{s}(g,j) = \begin{cases} 1 & g = i(j) \\ -1 & g = k(j) \\ 0 & \not\equiv t t \end{cases}$$

式中*i*(*j*)、*k*(*j*)分别为薄膜结构中第*j*个单元所连接节点的首末节点编号.

1.2 无阻尼自由振动微分方程

i(j) > k(j)

其中,

根据有限元原理得到薄膜结构的无阻尼自由 振动微分方程为

$$[M] \{ \ddot{x} \} + [K] \{ x \} = \{ 0 \}$$
(5)

[M]、[K]分别表示结构系统的质量矩阵及刚度矩阵,[x]、[x]分别表示结构系统的位移及加速度向量. 假设薄膜结构作简谐振动, 即 $\{x\} = \{\varphi\} \sin(\omega t + \theta)$,则有:

$$[K] \{\varphi\} - \omega^2 [M] \{\varphi\} = \{0\}$$
(6)

求解以上方程可得到系统的 n 个固有频率 $\omega_1, \omega_2, \dots, \omega_n, \varphi_1, \varphi_2, \dots, \varphi_n$.

2 有限元模型建立

2.1 有限元模型前处理

以 Φ =4 m 口径的径向加强肋-薄膜伞状天线 为对象,进行其展开状态下的动力学有限元建模和 分析.天线主要由天线底座、馈源、馈源支架及天线 反射面等组成,其中天线反射面由 48 根径向加强 肋及钼质金属薄膜组成.对上述大型径向加强肋-薄膜伞状天线进行有限元建模.选用匀质各向同性 材料变截面工字梁单元对复合材料径向加强肋及 馈源支架结构进行等效模拟,采用板壳单元对复合 材料天线底座、馈源、薄膜结构进行模拟,模型共有 板壳单元 4272 个,梁单元 1369 个,节点 4686 个.

图 3 径向加强肋-薄膜伞状天线有限元模型 Fig. 3 FEM model of radial stiffening rib-membrane umbrella antenna

2.2 初始条件模拟

(1)确定弹性模量

采用板壳单元模拟薄膜结构,首先需要确定板 壳单元的材料常数和厚度.通过试验可以得到薄膜 结构的力学特性^[10].一块密度为70g/m²钼质金属 薄膜四边上施以两对平行位移约束,对其施加 2kg/m的双向拉力.测试得到其两个方向延展率均 为10%.假设板壳单元的厚度为1mm,根据广义胡 克定律,可得到:

$$\varepsilon_1 = \frac{1}{E} [\sigma_1 - \mu (\sigma_2 + \sigma_3)] \tag{7}$$

由薄膜结构的力学特性可知:

$$\sigma_1 = \sigma_2 = \frac{F}{A} = 2 \times 10^{-3} \text{ kg/mm}^2$$

 $\sigma_3 = 0, \varepsilon_1 = 0.1, \mu = 0.3 \tag{8}$

由式(8)得:

(4)

$$E = 14 \times 10^{-3} \text{kg/mm}^2$$
 (9)

(2)预紧力模拟

模拟薄膜预张力需要通过在板壳单元上施加 温度梯度载荷来实现.物体由于温度的升高或降低 而发生膨胀或收缩,如果物体各部分变化均匀且不 受任何约束,将不会产生应力,物体此时的应变可 定义为初应变.

$$\{{}_{\iota}\sigma\} = [{}^{\iota}D](\{{}_{\iota}\varepsilon\} - \{\varepsilon_0\})$$
(11)

其中,[⁴D]是材料本构关系矩阵,则 t 时刻温度应 变引起的单元温度荷载向量表达式为:

 $[{}_{t}^{t}P_{\varepsilon_{0}}]^{s} = \int [{}_{t}^{t}B]^{T}[{}^{t}D]\varepsilon_{0}d^{t}V$ (12) 其中, $[{}_{t}^{t}P_{\varepsilon_{0}}]^{s}$ 为 t 时刻温度应变引起的载荷项, $[{}_{t}^{t}B]^{T}$ 为线性应变位移转换矩阵,因此薄膜结构在 温度作用下的有限元方程表达式为:

 $([{}_{t}^{t}K_{L}] + [{}_{t}^{t}K_{NL}])\{{}_{t}U\} = \{{}_{t}^{t-\Delta t}R\} + \{{}_{t}^{t}P\varepsilon_{0}\}(13)$ 其中, $[{}_{t}^{t}K_{L}]$ 为线性刚度矩阵, $[{}_{t}^{t}K_{NL}]$ 为非线性刚度 矩阵, $\{{}_{t}U\}$ 为 t 时刻单元节点位移增量矩阵, $\{{}_{t}^{t-\Delta t}R\}$ 为时刻 $t - \Delta t$ 的单元等效节点荷载向量.

因此,给定参考温度 *T*₀,即可得到在板壳单元 上施加的温度载荷 *T*.采用这种方法及对薄膜结构 进行预应力的施加. 热膨胀系数 α 设为 0.01,温度 梯度设为 14°.

2.3 材料属性

薄膜结构采用 3.2 节得到的材料参数,径向加 强肋采用等效横观各向异性材料,馈源及馈源支座 采用铝合金,底座采用 M55J/AG - 80 各向同性铺 层,其铺层方式为 2mm 厚位置[+45/-45/0/90]₁₀,6mm 厚位 置[+45/-45/0/90]₁₅,如下图所示,具体材料参 数如下表所示:

Table 1	Material	parameters
---------	----------	------------

Material	E(Pa)	μ	$G_{12}(\operatorname{Pa})$	$ ho(kg/m^2)$
molybdenum	140000	0.3	—	70
Al	$70e^9$	0.3	—	2800
equivalent	$E_{11} = 111 e^9$ $E_{22} = 146 e^9$	0.3	$G_{12} = 3.2e^9$	1800
M55J/AG - 80	$E_{11} = 178e^9$ $E_{11} = 8 3e^9$	0.3	$G_{12} = 4.6e^9$	1800

图 4 底座材料铺层示意图 Fig. 4 Layer of base material

2.4 边界条件

对于薄膜结构、天线底座、馈源及馈源支架中各 个零件之间的连接,采用耦合自由度的方式连接螺 栓孔周围的节点.在有限元分析中,完全真实地模拟 螺栓的连接关系是一个非常复杂的非线性过程,为 此需要做一定的简化处理.本文通过耦合螺栓连接 位置周围节点的自由度来处理,忽略了连接处的局 部应力对整体结构应力的影响,采用 RBE2 多点约 束单元约束其相对位移,如图1有限元模型所示,馈 源与馈源支座之间,底座与钼质金属薄膜之间均采 用 RBE2 方式建立 MPC 单元.天线底座与星体连接 处进行固支约束,如图1有限元模型所示.

3 结果分析

3.1 施加温度梯度载荷静力分析

根据静力平衡方程,对模拟薄膜结构的板壳单 元均匀施加温差为14°的温度梯度载荷,经计算得 到径向肋-薄膜天线的应力云图及位移图,如下图 所示:

图 5 海旗应力公图 Fig. 5 Membrane stress

由应力云图可知,施加温度梯度载荷之后,薄 膜结构根部 MISES 应力值最大,为0.0274MPa,边 缘处应力值最小,最小值为0.00378 MPa,应力分

由位移图可知,薄膜的位移方式为向中前翘曲,其最大位移值为1.2mm.

3.2 考虑预应力的模态分析

根据振动微分方程,通过有限元计算得到径向 加强肋-薄膜伞状天线前6阶频率及模态有效质 量,如下表所示,部分振型图如下图所示.

表2 基频及模态有效质量

Table 2 Fundamental frequency and mode effective mass

Freq. (Hz)	TX	TY	TZ	RX	RY	RZ
2.367	—	—	—	_	0.741	_
2.80	0.098	—	0.039	0.012	—	_
2.81	0.039	_	0.098	0.029	_	_
3.98	_	_	0.218	0.404	_	_
8.84	—	_	_	_	_	0.405
8.94	_	—	_	_	_	_

由计算结果可知,模型的第一阶固有频率为 2.367Hz,为网面系统整体绕天线 Y 轴扭转;第二阶 固有频率为2.80Hz,为网面系统整体 X,Z 向平动 及绕 X 轴扭转组合模态;第三阶固有频率为 2. 81Hz,为网面系统整体 X,Z 向平动及绕 X 轴扭转 组合模态;第四阶固有频率为 3.98Hz,为网面系统 整体 Z 向平动及绕 X 轴扭转组合模态;第五阶固 有频率为 8.84Hz,为网面系统整体 Z 向转动模态. 第六阶固有频率为 8.94 Hz,为局部模态.其振型特 点为频率较低,且频谱分布密集.

4 结论

本文基于薄膜结构的初始状态预拉力平衡方 程,建立了径向加强肋-薄膜伞状天线展开状态有 限元动力学模型,对该模型首先进行了预紧力的静 力分析,然后进行施加预紧力之后的模态分析,获 得到了径向加强肋-薄膜伞状天线的动力学振动特 性,为径向肋-薄膜伞状天线的总体结构设计研究 提供了有力支撑,同时为后续的工程实施奠定了理 论基础.

参考文献

- 张久利. 空间大型金属反射网结构的分析与调整. 西安:西安电子科技大学. 2012 (Zhang J L. Analysis and adjustment of space large cable net structure. Xian: Xian Uinversity, 2012 (in Chinese))
- 2 刘荣强,田大可,邓荣全. 空间可展开天线结构的研究 现状与展望. 机械设计, 2010,27(9):1~9 (Liu R Q, Tian D K, Deng R Q. Research actuality and prospect of structure for space deployable antenna. *Journal of Machine Design*, 2010,27(9):1~9 (in Chinese))
- 3 Meguro A, Harada S, Watanaabe M. Key technologies for high-accuracy large mesh antenna reflectors. *Acta Astronau*-

135

tica, 2003,53(11):899~908

- 4 罗鹰,段宝岩. 星载可展开天线结构现状与发展. 电子 机械工程,2005,21(5):30~34 (Luo Y, Duan B Y. The study on structure of space deployed antenna. Electro-Mechanical Engineering, 2005,21(5):30~34 (in Chinese))
- 5 董明,夏绍华,钱若军等.张力结构的非线性有限元分析.计算力学学报,1997,14(3):268~275(Dong M, Xia S H, Qian R J, et al. An investigation of the nonlinear analysis of tensile structure with F.E.M.. Chinese Journal of Computational Mechanics, 1997,14(3):268~275(in Chinese))
- 6 周志成,曲广吉. 星载大型网状天线非线性结构系统有限元分析. 航天器工程, 2008,17(6):33~38 (Zhou Z C,Qu G J. Nonlinear finite element analysis of large mesh deployable antennaon satellite. *Spacecraft*, 2008,17(6): 33~38(in Chinese))
- 7 K Linkwitz. About form finding of double-curved structures. Engineering Structures, 1999,21:709 ~ 718

- 8 王珺,赵环迪,陈力奋. 预变形对非线性结构响应特征的影响. 动力学与控制学报, 2015, 13(3):188~193 (Wang J, Zhao H D, Chen L F. Effects of the initial deformation on the dynamic response of local nonlinear systems. *Journal of Dynamics and Control*, 2015, 13(3):188 ~193(in Chinese))
- 9 雷震. 星载可展天线索网预张力设计. 机械电子学学术 会议论文集, 2011 (Lei Z. Pretension design of large space cable-net deployable antennas. Symposiumon Mechatronics, 2011 (in Chinese))
- 10 陈庚超. 网状可展开天线力学分析研究. 西安电子科 技大学, 2007 (Chen G C. The study of net deployable reflector antenna mechanical analysis. Xidian University, 2007 (in Chinese))
- 11 张华,欧阳斌,单建. 预应力索膜结构的温度效应研究. 建筑技术, 2009,40(12):1106~1108 (Zhang H, Ouyang B, Shan J. Temperature effect on pretensioned cable-membrane structures. Architecture Technology, 2009,40(12):1106~1108 (in Chinese))

DYNAMICS MODELING AND NUMERICAL SIMULATION OF RADIAL STIFFENING RIB-MEMBRANE UMBRELLA ANTENNA STRUCTURE*

Li Dongying^{1,2†} Zhang Hua^{1,2} Liu Hanwu^{1,2}

Shanghai Key Laboratory of Spacecraft Mechanism, Shanghai 201108, China)
 Aerospace System Engineering Shanghai, Shanghai 201109, China)

Abstract Large deployable parabolic antenna has attracted great attention due to its special value. Radial stiffening rib-membrane umbrella antenna in this article is a typical nonlinear structural system. Establishing the FE model of the radial stiffening rib-membrane umbrella antenna rationally and accurately is very important to study its on-orbit dynamics characteristic. The temperature pretension equivalent method is employed to settle the initial condition and describe the pretension in the physical model of the radial stiffening rib-membrane umbrella antenna . The dynamics characteristic is obtained by FEM calculation, which provides essential data for structure design and mechanical research for the radial stiffening rib-membrane umbrella antenna.

Key words radial stiffening rib, pretension, antenna structure, FE

Received 23 January 2016, revised 23 August 2016.

^{*} The project supported by Natural Science Fund of Shanghai (16ZR143620)

[†] Corresponding author E-mail:lidongying917@163.com