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粘弹性地基上损伤弹性 Ｔｉｍｏｓｈｅｎｋｏ梁动力学行为

孙立新　盛冬发
（西南林业大学土木工程学院，昆明　６５０２２４）

摘要　建立了粘弹性地基上损伤弹性Ｔｉｍｏｓｈｅｎｋｏ梁在有限变形情况下的运动微分方程，这是一组非线性偏

微分方程．为了便于分析，首先利用Ｇａｌｅｒｋｉｎ方法对该方程组进行简化，得到一组非线性常微分方程．然后利

用Ｍａｔｌａｂ软件进行数值模拟，考察了载荷参数、地基粘性参数和弹性参数、损伤对梁振动的影响．采用非线

性动力学中的各种数值方法，如时程曲线、相平面图、Ｐｏｉｎｃａｒｅ截面和分叉图，发现增大地基的粘弹性参数，

有利于增强结构运动的稳定性，而损伤会降低结构运动的稳定性．
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引言

材料在使用过程中会发生损伤，损伤累积到一

定程度会造成材料的失效破坏，对结构的安全和可

靠性的研究早已引起国内外力学工作者的普遍重

视．Ｐｅｌｌｉｃａｎｏ和 Ｖｅｓｔｒｏｎｉ［１］用 Ｇａｌｅｒｋｉｎ截断法分析

了带有几何非线性项的稳定运动梁在亚临界及超

临界速度时的动态特性，发现了超临界速度状态下

系统存在稳定区域的现象．ＮｕｎｚｉａｔｏＪＷ和ＣｏｗｉｎＳ

Ｃ［２］提出了带孔隙的弹性材料的非线性理论，建立

了带孔隙材料的理论框架，后经线性化发展成为可

以用于工程计算的线性理论．盛冬发［３］从考虑损伤

的粘弹性材料的一种卷积本构关系出发，建立了在

有限变形下损伤粘弹性 Ｔｉｍｏｓｈｅｎｋｏ梁的运动微分

方程．孟红磊［４］研究了含损伤非线性粘弹性本构模

型及数值仿真应用，提出了一种含累积损伤的非线

性粘弹性本构方程．李晶晶［５］对有限变形条件下，

Ｔｉｍｏｓｈｅｎｋｏ粘弹性梁非线性分析的数学模型应用

微分求积方法进行空域的离散，得到了简支粘弹性

梁的简化模型．唐有绮［６］研究了轴向加速粘弹性

Ｔｉｍｏｓｈｅｎｋｏ梁的非线性参数振动，描述了各参数对

稳态响应的影响．

本文从损伤线弹性理论出发，建立了粘弹性地

基上损伤弹性 Ｔｉｍｏｓｈｅｎｋｏ梁的运动微分方程．应

用Ｇａｌｅｒｋｉｎ方法和非线性动力学数值分析方法，在

数值上分析了粘弹性地基上损伤弹性 Ｔｉｍｏｓｈｅｎｋｏ

梁丰富的动力学行为．分析比较了载荷参数，地基

粘性参数和弹性参数，损伤对梁的动力学行为的影

响，以及地基粘弹性参数对结构损伤增量的影响．

１　损伤弹性Ｔｉｍｏｓｈｅｎｋｏ梁运动微分方程

考虑如图１所示的梁，设梁是等截面的，面积为ｑ

＝０．２，高为ｑ＝０．１，长为ｌ，密度为ρ．若作用于梁的载

荷ｑ（ｘ，ｔ）在ｘｙ平面内，则可以认为该梁处于平面弯

曲状态．根据Ｔｉｍｏｓｈｅｎｋｏ梁理论，位移可设为［７］

图１　带损伤弹性Ｔｉｍｏｓｈｅｎｋｏ梁

Ｆｉｇ．１　ＥｌａｓｔｉｃＴｉｍｏｓｈｅｎｋｏｂｅａｍｓｗｉｔｈｄａｍａｇｅ

ｕ１＝ｕ（ｘ）＋ｙφ（ｘ）

ｕ２＝ｖ（ｘ{ ）
（１）

式中 φ表示 ｙ轴的转角．设梁不受轴力作用，有
ｕ（ｘ，ｔ）＝０．根据有限变形理论，由位移可得
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σｉｊ＝λδｉｊεｋｋ＋２μεｉｊ－βＤ
～δｉｊ （３）

其中β为材料参数，δｉｊ是克罗内克符号，λ和 μ为

Ｌａｍｅ系数，即λ＝ Ｅｖ
１＋( )ｖ １－２( )ｖ，μ＝

Ｅ
２１＋( )ｖ．由

（３）式可得
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这里Ｄ～＝Ｄ－Ｄ０为损伤增量，根据Ｃｏｗｉｎ［８］的理论，
在梁的上下前后表面上损伤增量应该满足Ｄ～，ｎ＝０．

为了方便，假定Ｄ～（ｘ，ｙ，ｚ，ｔ）＝Ｄ～（ｘ，ｔ）Ｄ（ｙ，ｚ）．在具
体计算时，必须事先选择 Ｄ（ｙ，ｚ）的形式．令 Ａ＝

∫ＡＤ（ｙ，ｚ）ｄｙｄｚ，Ａ１ ＝∫ＡＤ（ｙ，ｚ）ｚｄｙｄｚ，Ａ２ ＝∫ＡＤ（ｙ，
ｚ）ｙｄｙｄｚ，Ａ３＝∫ＡＤ（ｙ，ｚ）Ｄ（ｙ，ｚ）ｄｙｄｚ．损伤增量Ｄ～的
运动微分方程为［９］：

－ρｋＤ～̈＝－αＤ～，ｉｉ＋ωＤ
～· ＋ξＤ～－

　　　βＡ３
（Ａ２
φ
ｘ
＋Ａ１
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ｘ
）＋ＡＡ３

ｌ （５）

式中ｋ是与损伤有关的平衡惯量，α，ω，ξ，β为材
料的特征常数．

损伤增量可假设为坐标 ｙ的三次函数，即Ｄ～

（ｘ，ｙ，ｔ）＝Ｄ～（ｘ，ｔ）（ｙ
３

３－
ｈ２
４ｙ），因而Ｄ

～
（ｘ，ｙ，ｔ）满足ｙ

＝±ｈ２表面上
Ｄ～（ｘ，ｙ，ｔ）
ｙ

＝０的条件．假定梁的横

截面是矩形的，则由上式可得损伤增量Ｄ～的运动微
分方程为

－ρｋＤ～̈＝－α
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在有限变形情况下，粘弹性地基上梁的平衡方

程［１０］为
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其中：Ｔｘ ＝
Ａ

σｘｄＡ，Ｍｚ＝
Ａ

σｘｙｄＡ，Ｐｚ＝
Ａ

σｘｙ
２ｄＡ，

Ｑｙ ＝ζ
Ａ

τｘｙｄＡ，Ｒｙ ＝ζ
Ａ

τｘｙｙｄＡ．这里ζ为剪切修正

系数．ｋ０，η分别为基础的弹性和粘性系数．由（４），
（７）不难得到用扰度、转角和损伤增量表示的梁的
运动微分方程
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其中Ｉｚ＝
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为了方便，设梁的两端是简支的且损伤增量为

零，则有端部条件

ｖ＝０，φ
ｘ
＝０，^Ｄ＝０，　当ｘ＝０和ｘ＝ｌ时．（９）

２　数学模型简化

采用数值方法来求解非线性偏微分方程组

（６），（８），揭示非线性损伤弹性Ｔｉｍｏｓｈｅｎｋｏ梁的动
力学性质．但该非线性积分－偏微分方程组通常难
以求解，采用伽辽金方法将问题简化为非线性积分

－常微分方程组进行求解．
根据边界条件（９），问题的解可取为如下的形

式

ｖ（ｘ，ｔ）＝∑
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Ｄ～（ｘ，ｔ）＝∑
∞

ｎ＝１
Ｄ～ｎ（ｔ）ｓｉｎ

ｎπｘ
Ｌ （１０）

假定梁受到的横向载荷为

ｑ（ｘ，ｔ）＝ｑ（ｔ）ｓｉｎπｘＬ （１１）

取ｎ＝１，３时，将（１０）（１１）代入方程组（６）
（８），可得到简化的２阶Ｇａｌｅｒｋｉｎ截断系统为

－Ａ１ｖ１－Ａ２×ｖ１
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～̈
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在方程组（１２）中，如取ｖ３＝φ３＝Ｄ
～
３＝０，即ｎ＝

１，则二阶Ｇａｌｅｒｋｉｎ截断系统可简化为一阶系统．通
过比较，一阶和二阶Ｇａｌｅｒｋｉｎ截断系统动力学行为
相似．本文以二阶系统来研究梁的梁动力学行为，
其它更高阶的截断系统和二阶系统动力学行为是

相似的［１１］．方程组（１２）的系数不仅与梁的几何性
质有关，也与梁和地基的材料性质有关．方程中各
系数的表达式在附录Ａ中给出．

３　数值求解和讨论

引入量纲 －参量 β１＝Ｌ／ｈ，ｖ＝ｖ／ｈ，Ｄ
～
１＝ｈ

３Ｄ～１，

β２＝Ｅ／（ρＶｃ
２），β３＝β／（ρＶｃ

２），β４＝α／（ρｋＶｃ
２），β５＝

ξｈ２／（ρｋＶｃ
２），β６＝ωｈ／（ρｋＶｃ），β７＝βｈ

２／（ρｋＶｃ
２），β８

＝ｋｈ／ρＶｃ
２，β９＝η／ρＶｃ，τ＝ｔＶｃ／ｈ，ｑ０＝ｑ／（ｈＥ）．

并做如下的变量变换：

ｙ１＝ｖ１，ｙ２＝ｖ１，ｙ３＝φ１，ｙ４＝φ１，ｙ５＝ｖ３，ｙ６＝ｖ３，ｙ７＝φ３，

ｙ８＝φ３，ｙ９＝Ｄ
～
１，ｙ１０＝Ｄ

～·

１，ｙ１１＝Ｄ
～
３，ｙ１２＝Ｄ

～·

３．

可得以下的常微分方程组：

ｙ１＝ｙ２
ｙ２＝－ｋ１ｙ１－ｋ２ｙ１

３－ｋ３ｙ１
２ｙ５－ｋ４ｙ５

２ｙ１－ｋ５ｙ１
２ｙ５－

　ｋ６ｙ５
２ｙ１－ｋ７ｙ３－ｋ８ｙ３

２ｙ１＋ｋ９ｙ３
２ｙ５－ｋ１０ｙ３ｙ７ｙ１－

　ｋ１１ｙ７
２ｙ１＋β２ｑ０－β８ｙ１－β９ｙ２

ｙ３＝ｙ４
ｙ４＝ｋ１２ｙ９－ｋ１３ｙ１－ｋ１４ｙ３＋ｋ１５ｙ１

２ｙ３－ｋ１６ｙ３ｙ５ｙ１＋

　ｋ１７ｙ５
２ｙ３＋ｋ１８ｙ１

２ｙ７＋ｋ１９ｙ３
３＋ｋ２０ｙ３

２ｙ７＋

　ｋ２１ｙ７
２ｙ３＋ｋ２２ｙ３

２ｙ７＋ｋ２３ｙ７
２ｙ３

ｙ５＝ｙ６
ｙ６＝－ｋ２４ｙ５－ｋ２５ｙ１

３－ｋ２６ｙ１
２ｙ５－ｋ２７ｙ１

２ｙ５－ｋ２８ｙ５－

　ｋ２９ｙ７＋ｋ３０ｙ３
２ｙ１－ｋ３１ｙ３

２ｙ５－ｋ３２ｙ７
２ｙ５－β８ｙ５－β９ｙ６

ｙ７＝ｙ８
ｙ８＝ｋ３３ｙ１１－ｋ３４ｙ５－ｋ３５ｙ７＋ｋ３６ｙ１

２ｙ３＋ｋ３７ｙ１
２ｙ７＋

　ｋ３８ｙ５
２ｙ７＋ｋ３９ｙ３

３＋ｋ４０ｙ３
２ｙ７＋ｋ４１ｙ３

２ｙ７＋ｋ４２ｙ７
３

ｙ９＝ｙ１０
ｙ１０＝－ｋ４３ｙ９－ｋ４４ｙ１０＋ｋ４５ｙ３
ｙ１１＝ｙ１２
ｙ１２＝－ｋ４６ｙ１１－ｋ４７ｙ１２＋ｋ４８ｙ７

图２　不同ｑ时系统的时程曲线（β８＝４０，β９＝１）

Ｆｉｇ．２　Ｔｉｍｅｈｉｓｔｏｒｙｃｕｒｖｅｓｏｆｔｈｅｓｙｓｔｅｍｆｏｒ

ｄｉｆｆｅｒｅｎｔｐａｒａｍｅｔｅｒｑ（β８＝４０，β９＝１）

方程组中的系数在附录 Ｂ中给出．用 Ｒｕｎｇ
Ｋｕｔｔａ方法对方程进行数值求解，编制专用计算程
序，同时取β１＝４，β２＝１０

４，β３＝３．３３×１０
５，β４＝５×

１０３，β５＝５×１０
３，β６＝３６．１，β７＝４．１７×１０

３，ζ＝５／

６，ｖ＝０．３，ｑ０＝ｑｓｉｎ（２πｔ）
［３］．图２～４示出了当地基
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弹性参数β８＝４０和地基粘性参数 β９＝１时，不同
的荷载参数对系统运动特性的影响．

图３　不同ｑ时系统的相平面图（β８＝４０，β９＝１）

Ｆｉｇ．３　Ｐｈａｓｅｔｒａｊｅｃｔｏｒｙｄｉａｇｒａｍｓｏｆｔｈｅｓｙｓｔｅｍｆｏｒ

ｄｉｆｆｅｒｅｎｔｐａｒａｍｅｔｅｒｑ（β８＝４０，β９＝１）

图４　不同ｑ时系统的Ｐｏｉｎｃａｒｅ图（β８＝４０，β９＝１）

Ｆｉｇ．４　Ｐｏｉｎｃａｒｅｓｅｃｔｉｏｎｓｏｆｔｈｅｓｙｓｔｅｍｆｏｒ

ｄｉｆｆｅｒｅｎｔｐａｒａｍｅｔｅｒｑ（β８＝４０，β９＝１）

图２～图４分别给出了当β９＝１，β８＝４０时，对于不

同载荷 ｑ系统的时程图，相平面图和 Ｐｏｉｎｃａｒｅ截

面．可以看出，当载荷参数ｑ增大时，系统由稳定的

周期运动向不稳定的混沌运动转化．

图５，图６分别给出了当β９＝１，ｑ＝０．３５时，对

于不同地基弹性参数 β８系统的相平面图和分岔

图．由图可见，当地基弹性参数 β８增大时，系统由
混沌运动向周期运动转化．增加地基的弹性参数，
将会抑制系统混沌运动的发生，有利于结构运动的

稳定性．

图５　不同β８时系统的相平面图（ｑ＝０．３５，β９＝１）

Ｆｉｇ．５　Ｐｈａｓｅｔｒａｊｅｃｔｏｒｙｄｉａｇｒａｍｓｏｆｔｈｅｓｙｓｔｅｍｆｏｒ

ｄｉｆｆｅｒｅｎｔｐａｒａｍｅｔｅｒβ８（ｑ＝０．３５，β９＝１）

图６　ｑ＝０．３５，β９＝１时，扰度随弹性参数β８变化时的分岔图

Ｆｉｇ．６　Ｂｉｆｕｒｃａｔｉｏｎｄｉａｇｒａｍｏｆｄｅｆｌｅｃｔｉｏｎｗｉｔｈｔｈｅｃｈａｎｇｅｏｆ

ｔｈｅｅｌａｓｔｉｃｐａｒａｍｅｔｅｒβ８ｗｈｅｎｑ＝０．３５，β９＝１

图７给出了当ｑ＝０．２，β８＝１０时，对于不同地
基粘性参数β９系统的相平面图．由图可知，当地基
粘性参数 β９增大时，粘弹性地基上的 Ｔｉｍｏｓｈｅｎｋｏ
的运动会由混沌运动向周期运动转化．

图８给出了当ｑ＝０．３，β９＝１，β８＝４０时，粘弹
性地基上损伤Ｔｉｍｏｓｈｅｎｋｏ梁和无损 Ｔｉｍｏｓｈｅｎｋｏ梁
的相平面图．由图可以看出，在运动条件相同情况
下，有损 Ｔｉｍｏｓｈｅｎｋｏ梁的动力学行为比无损时稳
定性低，说明损伤降低了梁运动的稳定性．

图９（ａ）给出了当ｑ＝０．２，β８＝１０时，地基粘性
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图７　不同β９时系统的相平面图（ｑ＝０．２，β８＝１０）

Ｆｉｇ．７　Ｐｈａｓｅｔｒａｊｅｃｔｏｒｙｄｉａｇｒａｍｓｏｆｔｈｅｓｙｓｔｅｍｆｏｒ

ｄｉｆｆｅｒｅｎｔｐａｒａｍｅｔｅｒβ９（ｑ＝０．２，β８＝１０）

图８　ｑ＝０．３时系统的相平面图（β８＝４０，β９＝１）

Ｆｉｇ．８　Ｐｈａｓｅｔｒａｊｅｃｔｏｒｙｄｉａｇｒａｍｓｏｆｔｈｅｓｙｓｔｅｍ

ｗｈｅｎｑ＝０．３（β８＝４０，β９＝１）

图９　地基粘弹性参数对结构损伤增量的影响

Ｆｉｇ．９　Ｉｎｆｌｕｅｎｃｅｏｆｔｈｅｖｉｓｃｏｅｌａｓｔｉｃｐａｒａｍｅｔｅｒｓｏｆｆｏｕｎｄａｔｉｏｎ

ｏｎｔｈｅｄａｍａｇｅｉｎｃｒｅｍｅｎｔｏｆｔｈｅｓｔｒｕｃｔｕｒｅ

参数对弹性损伤 Ｔｉｍｏｓｈｅｎｋｏ梁的最大损伤增量的
影响，从图中可以看出虽然损伤增量有所波动，但

变化较小，故地基的粘性参数对结够损伤增量的影

响不是太大．图（ｂ）给出了当 ｑ＝０．２，β９＝１时，地
基弹性参数对弹性损伤 Ｔｉｍｏｓｈｅｎｋｏ梁的最大损伤

增量的影响，可以看出随着地基弹性参数的增大，

结构的损伤增量有下降的趋势．增加地基弹性参
数，有利于减少结构在使用过程中的损伤．

４　结论

建立了粘弹性地基上损伤弹性 Ｔｉｍｏｓｈｅｎｋｏ梁
在有限变形情况下的控制方程，通过 Ｇａｌｅｒｋｉｎ方法
得到了简支梁的运动方程．采用非线性动力学中的
各种数值方法，计算得到各种响应图形，如时程曲

线、相图和Ｐｏｉｎｃａｒｅ截面和分叉图．揭示了粘弹性
地基上损伤弹性 Ｔｉｍｏｓｈｅｎｋｏ梁的丰富动力学行
为．经过分析和计算，可以得到如下的主要结论：

（１）载荷参数对 Ｔｉｍｏｓｈｅｎｋｏ梁动力响应有较
大影响．载荷越大，系统越不稳定，使系统由稳定的
周期运动向不稳定的混沌运动转化．

（２）地基参数对结构动力响应也有较大的影
响，可以看出增大地基的粘性参数和弹性参数有利

于增强结构的稳定性．
（３）损伤会降低粘弹性地基上弹性Ｔｉｍｏｓｈｅｎｋｏ

梁运动的稳定性．
（４）增加地基弹性参数，有利于降低结构使用

过程中的损伤．
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Ａｂｓｔｒａｃｔ　ＴｈｅｄｉｆｆｅｒｅｎｔｉａｌｅｑｕａｔｉｏｎｓｏｆｍｏｔｉｏｎｇｏｖｅｒｎｉｎｇｎｏｎｌｉｎｅａｒｄｙｎａｍｉｃａｌｂｅｈａｖｉｏｒｏｆｅｌａｓｔｉｃＴｉｍｏｓｈｅｎｋｏ
ｂｅａｍｓｗｉｔｈｄａｍａｇｅｏｎｖｉｓｃｏｅｌａｓｔｉｃｆｏｕｎｄａｔｉｏｎａｒｅｇｉｖｅｎｉｎｔｈｉｓｐａｐｅｒ．Ｉｔｉｓｋｎｏｗｎｔｈａｔｔｈｅｄｅｒｉｖｅｄｅｑｕａｔｉｏｎｓａｒｅ
ａｓｅｔｏｆｎｏｎｌｉｎｅａｒｐａｒｔｉａｌｄｉｆｆｅｒｅｎｔｉａｌｅｑｕａｔｉｏｎｓ．Ｔｏｔｈｉｓｅｎｄ，ｔｈｅＧａｌｅｒｋｉｎｍｅｔｈｏｄｉｓｆｉｒｓｔｌｙａｐｐｌｉｅｄｔｏｓｉｍｐｌｉｆｙｔｈｉｓ
ｓｅｔｏｆｅｑｕａｔｉｏｎｓ，ａｎｄａｓｅｔｏｆｏｒｄｉｎａｒｙｄｉｆｆｅｒｅｎｔｉａｌｅｑｕａｔｉｏｎｓａｒｅｏｂｔａｉｎｅｄ．ＴｈｅＭａｔｌａｂｓｏｆｔｗａｒｅｉｓｔｈｅｎｕｓｅｄｔｏ
ｓｉｍｕｌａｔｅｔｈｅｄｙｎａｍｉｃａｌｂｅｈａｖｉｏｒｓｏｆｔｈｅｅｌａｓｔｉｃＴｉｍｏｓｈｅｎｋｏｂｅａｍｓ．Ｍｅａｎｗｈｉｌｅ，ｔｈｅｉｎｆｌｕｅｎｃｅｏｆｔｈｅｌｏａｄａｎｄｔｈｅ
ｖｉｓｃｏｅｌａｓｔｉｃｐａｒａｍｅｔｅｒｓｏｆｆｏｕｎｄａｔｉｏｎａｎｄｔｈｅｄａｍａｇｅｏｎｔｈｅｄｙｎａｍｉｃｂｅｈａｖｉｏｒｓｏｆｂｅａｍｓｉｓａｌｓｏｓｔｕｄｉｅｄ．Ｖａｒｉｏｕｓ
ｎｕｍｅｒｉｃａｌｍｅｔｈｏｄｓｏｆｎｏｎｌｉｎｅａｒｄｙｎａｍｉｃｓａｒｅｕｓｅｄｉｎｃｌｕｄｉｎｇｔｉｍｅｈｉｓｔｏｒｙｃｕｒｖｅｓ，ｐｈａｓｅｔｒａｊｅｃｔｏｒｙｄｉａｇｒａｍ，Ｐｏｉｎ
ｃａｒｅｓｅｃｔｉｏｎｓａｎｄｂｉｆｕｒｃａｔｉｏｎｆｉｇｕｒｅｓ．ＩｔｉｓｆｏｕｎｄｔｈａｔＴｈｅｓｔａｂｉｌｉｔｙｏｆｍｏｖｅｍｅｎｔｏｆｔｈｅｓｔｒｕｃｔｕｒｅｉｓｓｔｒｅｎｇｔｈｅｎｅｄ
ｗｈｅｎｔｈｅｖｉｓｃｏｅｌａｓｔｉｃｐａｒａｍｅｔｅｒｓｏｆｆｏｕｎｄａｔｉｏｎａｒｅｉｎｃｒｅａｓｅｄ，ｂｕｔｔｈｅｄａｍａｇｅｏｆｔｈｅＴｉｍｏｓｈｅｎｋｏｂｅａｍｓｒｅｄｕｃｅｓ
ｔｈｅｓｔａｂｉｌｉｔｙｏｆｍｏｖｅｍｅｎｔｏｆｔｈｅｓｔｒｕｃｔｕｒｅ．

Ｋｅｙｗｏｒｄｓ　ｖｉｓｃｏｅｌａｓｔｉｃｆｏｕｎｄａｔｉｏｎ，　ｄａｍａｇｅ，　Ｔｉｍｏｓｈｅｎｋｏｂｅａｍｓ，　ｎｏｎｌｉｎｅａｒｄｙｎａｍｉｃｓ

３５５
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附录Ａ
Ａ１＝Ａπ

２ζμ／（２Ｌ），

Ａ２＝３Ａπ
４（λ＋２μ）／（１６Ｌ３），

Ａ３＝３Ａπ
４（λ＋２μ）／（８Ｌ３），

Ａ４＝９Ａπ
４（λ＋２μ）／（８Ｌ３），

Ａ５＝３Ａπ
４（λ＋２μ）／（１６Ｌ３），

Ａ６＝９Ａπ
４（λ＋２μ）／（４Ｌ３），

Ａ７＝Ａπζμ／２，Ａ８＝Ｉｚπ
４（λ＋２μ）／（１６Ｌ３），

Ａ９＝３Ｉｚπ
４（λ＋２μ）／（１６Ｌ３），

Ａ１０＝３Ｉｚπ
４（λ＋２μ）／（８Ｌ３），

Ａ１１＝９Ｉｚπ
４（λ＋２μ）／（１６Ｌ３），

Ａ１２＝ｋ０Ｌ／２，Ａ１３＝ηＬ／２，Ａ１４＝ρＬＡ／２，

Ｂ１＝９Ａπ
２ζμ／（２Ｌ），Ｂ２＝３Ａπ

４（λ＋２μ）／（１６Ｌ３），

Ｂ３＝９Ａπ
４（λ＋２μ）／（４Ｌ３），

Ｂ４＝９Ａπ
４（λ＋２μ）／（８Ｌ３），

Ｂ５＝２４３Ａπ
４（λ＋２μ）／（１６Ｌ３），Ｂ６＝３Ａπζμ／２，

Ｂ７＝３Ｉｚπ
４（λ＋２μ）／（１６Ｌ３），

Ｂ８＝９Ｉｚπ
４（λ＋２μ）／（８Ｌ３），

Ｂ９＝８１Ｉｚπ
４（λ＋２μ）／（１６Ｌ３），Ｂ１０＝ｋ０Ｌ／２，

Ｂ１１＝ηＬ／２，Ｂ１２＝ρＬＡ／２，Ａ１５＝Ａｈ
４πβ／１２０，

Ａ１６＝Ａπζμ／２，Ａ１７＝ＡＬζμ／２＋Ｉｚπ
２（λ＋２μ）／（２Ｌ），

Ａ１８＝Ｉｚπ
４（λ＋２μ）／（１６Ｌ３），

Ａ１９＝３Ｉｚπ
４（λ＋２μ）／（８Ｌ３），

Ａ２０＝９Ｉｚπ
４（λ＋２μ）／（８Ｌ３），

Ａ２１＝３Ｉｚπ
４（λ＋２μ）／（１６Ｌ３），

Ａ２２＝π
２Ｉｚζμ／（４Ｌ）＋３Ｊｚπ

４（λ＋２μ）／（１６Ｌ３），

Ａ２３＝π
２Ｉｚζμ／（２Ｌ）－３Ｊｚπ

４（λ＋２μ）／（８Ｌ３），

Ａ２４＝９Ｊｚπ
４（λ＋２μ）／（８Ｌ３），

Ａ２５＝π
２Ｉｚζμ／（４Ｌ）－３Ｊｚπ

４（λ＋２μ）／（１６Ｌ３），

Ａ２６＝５π
２Ｉｚζμ／（２Ｌ）＋９Ｊｚπ

４（λ＋２μ）／（４Ｌ３），

Ａ２７＝ρＬＩｚ／２，Ｂ１３＝Ａｈ
４πβ／４０，Ｂ１４＝３Ａπζμ／２，

Ｂ１５＝ＡＬζμ／２＋９Ｉｚπ
２（λ＋２μ）／（２Ｌ），

Ｂ１６＝３Ｉｚπ
４（λ＋２μ）／（１６Ｌ３），

Ｂ１７＝９Ｉｚπ
４（λ＋２μ）／（８Ｌ３），

Ｂ１８＝８１Ｉｚπ
４（λ＋２μ）／（１６Ｌ３），

Ｂ１９＝π
２Ｉｚζμ／（４Ｌ）－３Ｊｚπ

４（λ＋２μ）／（１６Ｌ３），

Ｂ２０＝５π
２Ｉｚζμ／（２Ｌ）＋９Ｊｚπ

４（λ＋２μ）／（４Ｌ３），

Ｂ２１＝９Ｊｚπ
４（λ＋２μ）／（８Ｌ３），

Ｂ２２＝９π
２Ｉｚζμ／（４Ｌ）＋２４３Ｊｚπ

４（λ＋２μ）／（１６Ｌ３），

Ｂ２３＝ρＬＩｚ／２，Ａ２８＝π
２α／（２Ｌ）＋Ｌξ／２，

Ａ２９＝Ｌω／２，Ａ３０＝４２πβ／（１７ｈ
２），Ａ３１＝ρｋＬ／２，

Ｂ２４＝９π
２α／（２Ｌ）＋Ｌξ／２，Ｂ２５＝Ｌω／２，

Ｂ２６＝１２６πβ／（１７ｈ
２），Ｂ２７＝ρｋＬ／２

附录Ｂ
κ＝（１－ｖ）／（１＋ｖ）／（１－２ｖ），
ｋ１＝π

２ζβ２／（２β１
２）／（１＋ｖ），

ｋ２＝３π
４κβ２／（８β１

４），ｋ３＝３π
４κβ２／（４β１

４），

ｋ４＝９π
４κβ２／（４β１

４），ｋ５＝３π
４κβ２／（８β１

４），

ｋ６＝９π
４κβ２／（２β１

４），ｋ７＝πζβ２／（２β１）／（１＋ｖ），

ｋ８＝π
４κβ２／（９６β１

４），ｋ９＝π
４κβ２／（３２β１

４），

ｋ１０＝π
４κβ２／（１６β１

４），ｋ１１＝３π
４κβ２／（１６β１

４），

ｋ１２＝πβ３／（５β１），ｋ１３＝６πζβ２／β１／（１＋ｖ），

ｋ１４＝６ζβ２／（１＋ｖ）＋π
２κβ２／β１

２，

ｋ１５＝π
４κβ２／（８β１

４），ｋ１６＝３π
４κβ２／（４β１

４），

ｋ１７＝９π
４κβ２／（４β１

４），ｋ１８＝３π
４κβ２／（８β１

４），

ｋ１９＝π
２ζβ２／（４β１

２）／（１＋ｖ）＋９π４κβ２／（１６０β１
４），

ｋ２０＝π
２ζβ２／（２β１

２）／（１＋ｖ）－９π４κβ２／（８０β１
４），

ｋ２１＝２７π
４κβ２／（８β１

４），

ｋ２２＝π
２ζβ２／（４β１

２）／（１＋ｖ）－９π４κβ２／（１６０β１
４），

ｋ２３＝５π
２ζβ２／（２β１

２）／（１＋ｖ）＋

　２７π４κβ２／（４０β１
４），

ｋ２４＝９π
２ζβ２／（２β１

２）／（１＋ｖ），

ｋ２５＝３π
４κβ２／（８β１

４），ｋ２６＝９π
４κβ２／（２β１

４），

ｋ２７＝９π
４κβ２／（４β１

４），ｋ２８＝２４３π
４κβ２／（８β１

４），

ｋ２９＝３πζβ２／（２β１）／（１＋ｖ），

ｋ３０＝π
４κβ２／（３２β１

４），ｋ３１＝３π
４κβ２／（１６β１

４），

ｋ３２＝２７π
４κβ２／（３２β１

４），ｋ３３＝３πβ３／（５β１），
ｋ３４＝１８πζβ２／β１／（１＋ｖ），

ｋ３５＝６ζβ２／（１＋ｖ）＋９π
２κβ２／β１

２，

ｋ３６＝３π
４κβ２／（８β１

４），ｋ３７＝９π
４κβ２／（４β１

４），

ｋ３８＝８１π
４κβ２／（８β１

４），

ｋ３９＝π
２ζβ２／（４β１

２）／（１＋ｖ）－９π４κβ２／（１６０β１
４），

ｋ４０＝５π
２ζβ２／（２β１

２）／（１＋ｖ）＋

　２７π４κβ２／（４０β１
４），

ｋ４１＝２７π
４κβ２／（８０β１

４），

ｋ４２＝９π
２ζβ２／（４β１

２）／（１＋ｖ）＋

　７２９π４κβ２／（１６０β１
４），

ｋ４３＝π
２β４／β１

２＋β５，ｋ４４＝β６，

ｋ４５＝８４πβ７／（１７β１），ｋ４６＝９π
２β４／β１

２＋β５，
ｋ４７＝β６，ｋ４８＝２５２πβ７／（１７β１）

４５５


