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Table 1 Material parameters
Ey 190GPa
E, 2GPa

Vs 0.278
vp 0.31

P, 2330kg/m’
Py 5670kg/m*
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hp =8pm;
e 2:a=1200pm,b =800um,h =10um,
hp =4pm;
#3:a =600wm,b =400pum,h =5um,
hp =2 pm;
M 4:a=300pm,b =200pm,h =2.5um,
hp =1pm.
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Table 2 Numerical results of natural frequencies

Plate 1 (kHz) Plate 2 (kHz)

Order With Without With Without
size effect size effect size effect size effect
1 49.02 48.13 103.24 96.26
2 94.28 92.56 198.54 185.11
3 150.85 148.09 317.67 296.18
4 169.70 166. 60 357.38 333.20
5 196. 10 192.52 412.97 385.03
Plate 3 (kHz) Plate 4 (kHz)
Order With Without With Without
size effect size effect size effect size effect
1 243.61 192.52 710.20 385.03
2 468.50 370.22 1366.42 740.44
3 749.63 592.35 2186.44 1184.71
4 843.35 666. 40 2459. 81 1332.80
5 974.56 770.06 2842.55 1540. 12

5 FE NS8O R B B, AR SO )
PR RIT L T A A 3R (B A 2% B8RS 3580 B s 4 fEL T
AP 2 i TR A R AR R
I

—e—the first order

80 —&—the second order

thethird order
the forth order
the fifth order

1 R2 %3 R4

B2 25 I8 R ROM G 4% B A SRS T A3 L
Fig. 2 Improvement percentage of natural frequencies

considering the size effect
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Table 3 Numerical results of natural frequencies

Plate 1 (kHz) Plate 2 (kHz)

Order With Without With Without
size effect size effect size effect size effect
1 11.97 11.85 24.69 23.69
2 22.47 22.18 46. 64 44.35
3 74.76 73.96 154.23 147.93
4 91.79 90.70 189.95 181.39
5 173.55 171.59 358.57 343.19
Plate 3 (kHz) Plate 4 (kHz)
Order With Without With Without
size effect size effect size effect size effect
1 54.90 47.38 145.79 94.77
2 105.78 88.71 290. 68 177.41
3 343.36 295.85 913.18 591.71
4 427.02 362.85 1155.20 725.57
5 808.22 686.37 2152.43 1372.75
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Table 4  Verification of the natural frequencies

ANSYS results Calculated results (kHz)

Order

(kHz) Without size effect With size effect
1 136. 62 138.81 156.20
2 265.53 266.94 276.41
3 426.89 427.11 485.87
4 479.33 480.50 514.28
5 554.93 555.24 624.82
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VIBRATION ANALYSIS OFTHE MICRO PIEZOELECTRIC LAMINATED
PLATE BASED ON THE STRAIN GRADIENT THEORY "

Zhang Xiaozhi Chen Lihua® Zhang Wei
( Betjing Key Laboratory of Nonlinear Vibrations and Strength of Mechanical Structures

College of Mechanical Engineering, Beijing University of Technology, Beijing 100124, China)

Abstract The dynamic model of the micro laminated plates is developed with its boundary conditions through
Hamilton principle, based on the classical thin plate theory and taken into consideration of the size effect caused
by the micro scale using the strain gradient theory. After choosing the proper mode functions for the boundary
conditions of both simple-support and cantilever, the first five orders of natural frequencies and the corresponding
3D mode shapes are achieved by the Ritz method, respectively. The effect of size effect on natural frequencies is

studied. Eventually, the influence of the external voltage on the natural frequency is also examined.

Key words strain gradient theory, ritz method, vibration analysis, natural frequency, mode shape
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