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i=a(y—x) +bys
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w=B(x" - 1)u-u’
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Y :adxjo/(ad -be), Xp = £/ (B +uj20)/[3 (3)
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IR, Ey KA R 55 H ay =0, B]

cahB + (cb +da)Bw’ /h + dbBw* /h* =0 (6)
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Fig. 1 Equilibrium curves and limit cycles
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The existence interval of limit cycles

Table 1

Hopf bifurcation Existence interval of Existence interval of

points CY,,(i=1,2,3) CY, (i=1,2,3)
H, [1.526,7.743) [7.743,17.646]
H, [0.658,5.371) [5.371,16.721]
H, [ -0.808,4.143) [4.143,14.993]
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Fig. 2 Time historyof bursting oscillation for initial point SP1
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Fig. 3 Overlap of equilibrium curves and transformed phase on

w-x-y space for initial point SP1(1.610,1.430, —2.240,2.820)

BOEBIZ A A gl %, B B a] o A & A] LK)
Wr, B UTERE TR B, A B8 HEd
Gy BP, (w = =5.180) ), E, , 2k X H S E 1
T UL R, T e LR AR TE, LA ORI
S7RPBRER , M2 A AR E - i E,, B T —B
AR, B E B(1.663,1. 483, —2.222,0.101) /5, It
B w =5. 418.

2k B SURH N E,, BEER, B SV E,
P&, TR B E, |, FEATRE , TR B i
A 1 Hopf 4375 M /™ A RS E I R IR CY, |, F7 4, %2
| CY,, BRG] LR IR (RS K, R GEH
HERSHEABURAS. B w W3, IR 0 R 2
zeig i, B3 w A3 RAE 10. 000 B, B3k
C ri. HEI3(0) AT C SAE KRR CY, 1=, BT LA
MU E CY, i3 B F 3. Z a2 w

IR R BRI CY, FHiG ) A iz 3 H 3
D(0.0,0.029, —2.012,1.074) f,, foif w =6. 135,
"X ABRE TR CY, K, Bk b F)|
CY, , (W s, BRI Rl S8 36 i BR 8 €Y, 4R35 91
Lz eissl. TR R 4/, IR iR
BEZ W/, BN ZE k0 %0 O H, L UEGR OR AS
LT R e AT R E, |, IR IR R AL SE R —
MR AL (EARE RIS, 7E— 1 S8 B i R S
BN, ARG AR RSB M S ESEER T
Hopf 5375518 1, PR AR 2 & e SCR AEXT
FRE5H 1Y Hopl/Hopf 2 %t T RGEMIRTFRIE, >4
BpIth 5 SP( - 1. 610, —1. 430, —2.240,2. 820)
Bf, RGAAETE— T LR LT v =0. 0 *Ff]
XIFRE 5]

T, EX A A B A D ST
mVEFE—PERE. R 1 AL 7E B fF0 D giik)™
X HIG ARG A RE RIS CY, ., CY,, CY, [F]
BIFETE. i T U B sSiz sl ds, AT~ X A
BRGEIIE L ZE w (HBUE N B XS R S.
418 %4 (1.663,1. 483, —2.222.0. 101) /E R #1 bk %
fF AR w =5. 418 i) L IR RS AHE (LI 4
(a) ), Al WA AR BRAS 2 B FR 2 €Y, b itk
AT ABEHIEES 9 B fi 6 T B IA R G0 R ER
CY,, 518N, It LR GEA ZE ot B iZ)E%
B CY, WG] TEE G m T CY, . [RFER T,
¥ w HBCER D S AR R E 6. 135, 24(0.0,0.
029, -2.012,1. 074) A# R SR X BB R



5

SRIETT A SRS T U4EAE L R G A AT LR 425

S (UL 4 (b)), iTRUA H R SR PR R
TR SRS CY,, Ui D fRFEAL T AR
RGUPRIRI O, IS, BT A R GRS
i D HZIR52E CY, MW E 1 ZEéE T CY, ..
APOL R BT A i R 2 T Has BT 1)

3

(a)

)iz &)y
(a) The trajectory of Point B forw =5.418

3

(b)

1+

0 1 2 3
X

(b) The trajectory of Point D forw =6.135

K4 T ARRGEAME

Fig. 4 Phase portrait of the generalized autonomous system
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Fig. 5 Time history of bursting oscillation for initial point SP2
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BURSTING COEXISTENCE PHENOMENONOF A FOUR-DIMENSIONAL
NON-AUTONOMOUS SYSTEM UNDER PERIODIC EXCITATION®

Zhang Xiaofang" Wu Lei Bi Qinsheng
(Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang 212013, China)

Abstract For a periodically excited four-dimensional non-autonomous system, when the exciting frequency is
much less than its nature frequency, dynamical behaviors associated with two time scales can be observed. The
excited system can be transformed into a general autonomous system by defining the whole exciting term as a slow-
varying parameter. Firstly, the stability and bifurcation conditions of equilibrium points in the generalized autono-
mous system are presented. Secondly, the slow-fast analysis and transformed phase are employed to explore the
different types of bursting behaviors with different initial conditions. In addition, the mechanism of coexistence
phenomenon is discussed. Meanwhile, delay phenomenon is observed between the points connecting the spiking

states and the quiescent states and the bifurcation points obtained theoretically.

Key words periodic excitation, bifurcation, bursting, two time scales
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