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周期激励下四维非线性系统的簇发共存现象

张晓芳　吴　磊　毕勤胜
（江苏大学土木工程与力学学院，镇江　２１２０１３）

摘要　在一个周期激励的四维非自治系统中，当激励的频率远小于系统的固有频率时，系统表现出了两时

间尺度的动力学行为．将激励项定义为慢变参数，激励系统可以转化为广义自治系统．分析了广义自治系

统平衡点的稳定性及其分岔条件．应用快慢分析法和转换相图，探讨了系统对应于不同初始条件的簇发现

象及其产生机制，并对其中多种簇发共存的形成机理进行了讨论．同时，由于慢过效应的存在，簇发振荡的

激发态和沉寂态的连接点和理论分析中的分岔点相比存在一定的滞后现象．
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引言

在非线性动力系统中，两时间尺度会导致系统

产生复杂的动力学行为，因而受到国内外学术界广

泛的关注［１－４］．其动力学行为通常表现为周期簇发
（ｐｅｒｉｏｄｉｃｂｕｒｓｔｉｎｇ）［５－６］，即在一个周期过程中呈现
出大幅振荡和小幅振荡的组合．大幅振荡可看作是
快慢系统的激发态（ｓｐｉｋｉｎｇｓｔａｔｅ）［７］．小幅振荡可看
作是快慢系统的静息态（ｑｕｉｅｓｃｅｎｔｓｔａｔｅ）［８］．

近几十年来，国内外学者分别从理论分析和数

值模拟等多方面对两时间尺度的动力学行为进行

了研究．起初，人们通过将整个系统约化到单时间
尺度上，给出系统的近似解［９］．随后，奇异摄动法
被用来分析多时间尺度系统的解析解［１０］．然而，
这两种方法都无法深入探讨不同时间尺度相互影

响下产生的复杂动力学特性．直到 Ｒｉｎｚｅｌ提出了
快慢分析法［１１］，不同时间尺度之间的相互作用及

其所导致的簇发振荡机理才得到很好的揭示．例
如，利用该方法和几何分岔理论，Ｓｉｍｏ等［１２］研究了

双阱磁耦合电子振荡器组合系统的簇发振荡；Ｂｅｒ
ｔｒａｉｎ等［１３］研究了具有双参 ＣｈａｙＣｏｏｋ模型的簇发
行为；Ｉｚｈｉｋｅｖｉｃｈ［１４］则提出了根据连接簇发态和静
息态的两个分岔来命名不同簇发行为的方法，并给

出了所有余维一分岔的簇发模式．到目前为止，虽

然在多时间尺度的研究领域取得了一定的成果［１５］，

但大多数成果都基于低维系统而展开的，对于高维

系统中的两时间尺度问题则涉及较少．高维系统由
于其自身的复杂性，如多平衡态共存［１６－１８］，使得系

统所表现出的簇发行为也尤为复杂．所以，高维系
统的多时间尺度问题还有待进一步深入探索．

本文针对一个周期激励的四维非线性系统，通

过参数调节使得激励频率远小于系统的固有频率，

系统具有频域上的两个时间尺度，从而表现出明显

的快慢效应．应用快慢分析法重点分析不同初始条
件下系统产生的簇发共存现象，揭示簇发产生的机

理．同时，进一步探讨了簇发共存现象的产生机制．

１　系统模型及分岔分析

为探讨高维系统的复杂簇发行为，我们在

Ａｂｏｏｅｅ等［１９］提出的一个三维混沌系统的基础上增

加一个控制项 ｕ，并引入周期激励，得到了一个新
的四维非自治系统
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其中，Ａ为激励幅值，ω为相应的激励频率．定义 ｗ
＝Ａｓｉｎ（ωｔ），系统（１）可转换为
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当激励频率ω远小于系统固有频率 ΩＮ时，系
统存在两个时间尺度．在每一个与固有频率有关
的快变周期ＴＮ＝２π／ΩＮ中，激励项ｗ＝Ａｓｉｎ（ωｔ）在
ＷＡ＝Ａｓｉｎ（ωｔ０）和ＷＢ＝Ａｓｉｎ（ωｔ０＋２πω／ΩＮ）之间变
化．由于 ω／ΩＮ１，对于任意一个快变周期，激励
项ｗ变化很小，因此可以将其作为系统（２）的一个
慢变参数．相应地，系统（２）可称之为广义自治系
统，这样就可以应用传统的快慢分析法来揭示周期

激励中不同簇发的产生机制．
当β＞０，ｃ＞０，ｄ＜０时，广义自治系统的平衡

点可以表示为 Ｅ０＝（０，０，－ｗ／ｈ，０），Ｅｉ± ＝（ｘｉ０，
ｙｉ０，ｚｉ０，０）以及Ｅｊ±＝（ｘｊ０，ｙｊ０，ｚｊ０，ｕｊ０），
其中，

ｚｉ０＝ｚｊ０ 槡＝± －ｃ／ｄ，ｙｉ０＝ａｄｘｉ０／（ａｄ－ｂｃ），

ｙｊ０＝ａｄｘｊ０／（ａｄ－ｂｃ），ｘｊ０＝± （β＋ｕ
２
ｊ０）／槡 β（３）

而ｘｉ０，ｕｊ０分别满足ｈｚｉ０＋ｋｘ
２
ｉ０＋ｗ＝０，

ｋｕ２ｊ０＋αβｕｊ０＋ｈβｚｊ０＋ｋβ＋βｗ＝０．
平衡点的稳定性决定于相应的特征方程

λ４＋ａ１λ
３＋ａ２λ

２＋ａ３λ＋ａ４＝０， （４）
由ＲｏｕｔｈＨｕｒｗｉｔｚ准则可知，当ａ１＞０，ａ４＞０，ａ１ａ２－

ａ３＞０，ａ４（ａ１ａ２ａ３－ａ
２
３－ａ

２
１ａ４）＞０时平衡点稳定．

我们讨论 Ｅ０的稳定性及其分岔条件．其中，
Ｅ０所对应的特征方程的系数分别为

ａ１＝β－ｈ＋ａ

ａ２＝－ｃａ－ｈβ＋ａβ－ａｈ－（ｃｂ＋ｄａ）ｗ
２／ｈ２－ｂｄｗ４／ｈ４

ａ３＝ｃａｈ－ａｈβ－ｃａβ＋（ｃｂ＋ｄａ）ｗ
２／ｈ－

　（ｃｂ＋ｄａ）βｗ２／ｈ２＋ｄｂｗ４／ｈ３－ｄｂβｗ４／ｈ４

ａ４＝ｃａｈβ＋（ｃｂ＋ｄａ）βｗ
２／ｈ＋ｄｂβｗ４／ｈ３ （５）

显然，Ｅ０发生简单分岔的条件为ａ４＝０，即

ｃａｈβ＋（ｃｂ＋ｄａ）βｗ２／ｈ＋ｄｂβｗ４／ｈ３＝０ （６）
将λ＝ｉω０代入特征方程，可以得到 Ｅ０产生

Ｈｏｐｆ分岔的条件为
ａ２３－ａ１ａ２ａ３＋ａ

２
１ａ４＝０ （７）

由于表达式繁琐，就不在此列出．为了进一步
讨论平衡点的稳定性及其分岔，将参数取定为 ａ＝
４０．０，ｂ＝１．０，ｃ＝５．０，ｄ＝－１．０，ｈ＝－５．０，ｋ＝－
６．０，α＝１．０，β＝５．０，不难得到，Ｅ０＝（０，０，ｗ／５，０）

在ｗ＝±１１．１８０处产生简单分岔．并且，在 ｗ ＞
１１．１８０时稳定，Ｅ０在［－１１．１８０，１１．１８０］内不稳
定，Ｅ０不满足产生Ｈｏｐｆ分岔的条件．

同样方法也可以分析其他平衡点的稳定性及

其分岔条件，只是比较繁琐，就不在此一一赘述，而

是通过图１给出了所有的平衡点及其分岔产生出
的极限环．图１（ａ）中，黄色、红色、蓝色和粉色曲
线分别表示平衡点 Ｅ０，Ｅ１±，Ｅ２±和 Ｅ３±，其中实线
表示平衡点稳定，虚线表示平衡点不稳定．图 １
（ｂ）（ｃ）（ｄ）中的红色、蓝色和粉色曲线分别表示经
过超临界Ｈｏｐｆ分岔点Ｈ１±、Ｈ２±和 Ｈ３±所产生的独
立的极限环ＣＹｉ±（ｉ＝１，２，３）以及极限环ＣＹｉ±碰撞
所产生的大的极限环 ＣＹｉ（ｉ＝１，２，３），各极限环的
存在区间和存在形式详见表１．

图１　平衡点曲线图及其分岔产生出的极限环

Ｆｉｇ．１　Ｅｑｕｉｌｉｂｒｉｕｍｃｕｒｖｅｓａｎｄｌｉｍｉｔｃｙｃｌｅｓ

表１　极限环的存在区间

Ｔａｂｌｅ１　Ｔｈｅｅｘｉｓｔｅｎｃｅｉｎｔｅｒｖａｌｏｆｌｉｍｉｔｃｙｃｌｅｓ

Ｈｏｐｆｂｉｆｕｒｃａｔｉｏｎ
ｐｏｉｎｔｓ

Ｅｘｉｓｔｅｎｃｅｉｎｔｅｒｖａｌｏｆ
ＣＹｉ±（ｉ＝１，２，３）

Ｅｘｉｓｔｅｎｃｅｉｎｔｅｒｖａｌｏｆ
ＣＹｉ（ｉ＝１，２，３）

Ｈ１ ［１．５２６，７．７４３） ［７．７４３，１７．６４６］
Ｈ２ ［０．６５８，５．３７１） ［５．３７１，１６．７２１］
Ｈ３ ［－０．８０８，４．１４３） ［４．１４３，１４．９９３］

２　周期激励下的簇发共存现象

在上述参数条件下，取定激励幅值 Ａ＝１０．０，
激励频率 ω＝０．２００，此时的激励频率远小于系统
的固有频率，初始点分别取 ＳＰ１（１．６１０，１．４３０，－

３２４
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２．２４０，２．８２０），ＳＰ２（１．４００，１．２５０，－２．２４０，０．０），
ＳＰ３（１．２１０，１．０８０，－２．２４０，－１．５４０）时，系统产
生了不同簇发共存的现象．
２．１　初始点取ＳＰ１（１．６１０，１．４３０，－２．２４０，２．８２０）

图２给出了初始值取 ＳＰ１（１．６１０，１．４３０，－２．
２４０，２．８２０）时系统的时间历程图．从图中可以看
出，系统产生了明显的簇发现象．

图２　初始点取ＳＰ１时簇发振荡的时间历程图

Ｆｉｇ．２　ＴｉｍｅｈｉｓｔｏｒｙｏｆｂｕｒｓｔｉｎｇｏｓｃｉｌｌａｔｉｏｎｆｏｒｉｎｉｔｉａｌｐｏｉｎｔＳＰ１

为了分析该簇发现象产生的机制，图３将平衡
点曲线与转换相图进行了叠加．图３（ａ）给出了ｗ
ｘ的二维叠加图，其中，红色实心圆点表示极限环

ＣＹ１±和ＣＹ１．图３（ｂ）给出了ｗｘｙ的三维叠加图，

红色曲线表示了ｗ＝１０．０００时的极限环ＣＹ１．

图３　初始点取ＳＰ１（１．６１０，１．４３０，－２．２４０，２．８２０）时

系统平衡点曲线与转换相图的叠加

Ｆｉｇ．３　Ｏｖｅｒｌａｐｏｆｅｑｕｉｌｉｂｒｉｕｍｃｕｒｖｅｓａｎｄｔｒａｎｓｆｏｒｍｅｄｐｈａｓｅｏｎ

ｗｘｙｓｐａｃｅｆｏｒｉｎｉｔｉａｌｐｏｉｎｔＳＰ１（１．６１０，１．４３０，－２．２４０，２．８２０）

假定轨线自 Ａ点出发，由时间历程图可以判
断，它将沿着稳定的平衡点 Ｅ２＋向右运动．当经过
分岔点ＢＰ＋（ｗ＝－５．１８０）时，Ｅ２＋失去其稳定性．
需要说明的是，由于滞后现象的存在，轨线并没有

立即跳跃，而是沿着不稳定的平衡点 Ｅ２＋走了一段
路程，直至Ｂ（１．６６３，１．４８３，－２．２２２，０．１０１）点，此
时ｗ＝５．４１８．

经过Ｂ点后轨线向 Ｅ１＋跳跃，围绕平衡点 Ｅ１＋
振荡，由于此时的 Ｅ１＋并不稳定，而在轨线的附近
有由Ｈｏｐｆ分岔而产生的稳定极限环 ＣＹ１＋存在，受
到ＣＹ１＋的吸引，轨线的振荡幅值迅速增大，系统由
静息态进入激发态．随着ｗ的增大，振荡的幅度也
继续增加，直到ｗ达到最大值１０．０００时，轨线到达
Ｃ点．由图３（ｂ）可知Ｃ点在大极限环ＣＹ１上，所以
轨线沿着ＣＹ１运动到下半部分．之后受激励项 ｗ
的影响，轨线围绕着极限环ＣＹ１开始向左运动直到
Ｄ（０．０，０．０２９，－２．０１２，１．０７４）点，此时ｗ＝６．１３５，
广义自治系统中的极限环 ＣＹ１消失，轨线回到
ＣＹ１＋的吸引域中，因此围绕着极限环 ＣＹ１＋振荡并
继续向左运动．由于极限环逐渐缩小，振荡幅值也
随之减小，直到穿过分岔点 Ｈ１＋，轨线退出激发态
最终收敛于稳定平衡点Ｅ２＋，回到初始点Ａ，完成一
个振荡周期．值得注意的是，在一个完整的簇发周
期内，系统进入簇发态和退出激发态都是由于

Ｈｏｐｆ分岔引起的，因此我们将该簇发定义为非对
称结构的Ｈｏｐｆ／Ｈｏｐｆ簇发．由于系统的对称性，当
取初始点 ＳＰ（－１．６１０，－１．４３０，－２．２４０，２．８２０）
时，系统还存在一个和上述轨线关于 ｘ＝０．０平面
对称的吸引子．

下面，要对轨线经过 Ｂ点和 Ｄ点后的运动方
向作进一步探讨．由表１可知，在Ｂ点和Ｄ点处广
义自治系统中有稳定的极限环 ＣＹ１±，ＣＹ２，ＣＹ３同
时存在．为了说明Ｂ点的运动趋势，我们将广义自
治系统中的慢变参数ｗ值取定为Ｂ点处对应值５．
４１８，将（１．６６３，１．４８３，－２．２２２，０．１０１）作为初始条
件，作出ｗ＝５．４１８时广义自治系统的相图（见图４
（ａ）），可见轨迹很快稳定到极限环 ＣＹ１＋上．由此
可以说明此时的Ｂ点位于广义自治系统中极限环
ＣＹ１＋的吸引域内，所以系统轨线穿过 Ｂ点之后受
到ＣＹ１＋的吸引，而逐渐趋向于ＣＹ１＋．同样的方法，
将ｗ值取定为Ｄ点处的对应值６．１３５，以（０．０，０．
０２９，－２．０１２，１．０７４）为初始条件作出广义自治系

４２４
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统的相图（见图４（ｂ）），可以看出系统的轨迹很快
稳定到极限环 ＣＹ１＋，说明 Ｄ点同样位于广义自治
系统中极限环 ＣＹ１＋的吸引域内，所以系统轨线穿
过Ｄ点之后受到ＣＹ１＋的吸引并逐渐趋向于 ＣＹ１＋．
可见，轨线所处的吸引域决定了其运动方向．

图４　广义自治系统的相图

Ｆｉｇ．４　Ｐｈａｓｅｐｏｒｔｒａｉｔｏｆｔｈｅｇｅｎｅｒａｌｉｚｅｄａｕｔｏｎｏｍｏｕｓｓｙｓｔｅｍ

２．２　初始点取 ＳＰ２（１．２１０，１．０８０，－２．２４０，－１．５４０）
取定初始点 ＳＰ２（１．２１０，１．０８０，－２．２４０，－１．

５４０），图５给出了系统的时间历程图．可以看出，相
比较初始点ＳＰ１，系统的簇发行为发生了明显的变
化．

图５　初始点取ＳＰ２时簇发振荡的时间历程图

Ｆｉｇ．５　ＴｉｍｅｈｉｓｔｏｒｙｏｆｂｕｒｓｔｉｎｇｏｓｃｉｌｌａｔｉｏｎｆｏｒｉｎｉｔｉａｌｐｏｉｎｔＳＰ２

为了揭示该簇发现象产生的原因，图６展示了

平衡点曲线与转换相图的叠加图，其中，图６（ａ）给
出了ｗｘ的二维叠加图，粉色实心原点表示极限环
ＣＹ３±及其发生碰撞后产生的同样具有对称结构的
大极限环ＣＹ３．图６（ｂ）给出了 ｗｘｙ的三维叠加
图，粉色曲线表示ｗ＝９．４４３处的极限环ＣＹ３．由叠
加图不难发现，相比较图３，系统的轨线在两个极
限环ＣＹ３＋和ＣＹ３－之间来回运动．

图６　初始点取ＳＰ２时系统平衡点曲线与转换相图的叠加

Ｆｉｇ．６　Ｏｖｅｒｌａｐｏｆｅｑｕｉｌｉｂｒｉｕｍｃｕｒｖｅｓａｎｄｔｒａｎｓｆｏｒｍｅｄｐｈａｓｅ

ｏｎｗｘｙｓｐａｃｅｆｏｒｉｎｉｔｉａｌｐｏｉｎｔＳＰ２

还是假定轨线从Ａ点出发，沿着稳定的平衡点
Ｅ２＋向右运动．当经过分岔点ＢＰ＋时，Ｅ２＋失去其稳
定性．由于滞后现象的存在，轨线没有立即跳跃，而
是沿着不稳定的平衡点 Ｅ２＋走了一段路程，直至 Ｂ
（１．６６８，１．４８４，－２．２２８，－０．０３９）点，此时 ｗ＝５．
５５２．

经过Ｂ点后轨线向 Ｅ３＋跳跃，围绕平衡点 Ｅ３＋
振荡，由于此时的 Ｅ３＋同样不稳定，受到由 Ｈｏｐｆ分
岔产生的稳定极限环ＣＹ３±发生碰撞后产生的大极
限环ＣＹ３的吸引，轨线的振荡幅值迅速增大，系统
由静息态进入激发态．随着ｗ的增大，振荡的幅度
也随之增大，直到ｗ达到９．４４３时，轨线到达Ｃ点．
由图６（ｂ）可知Ｃ点在极限环 ＣＹ３上，所以轨线围
绕着ＣＹ３运动到下半部分．之后，轨线围绕大环
ＣＹ３继续向右运动，直到运动到最右点ｗ＝１０．０００，

５２４



动　力　学　与　控　制　学　报 ２０１６年第１４卷

受激励项ｗ的影响，轨线围绕极限环ＣＹ３开始向左
运动．当运动到 Ｄ（０．０，－０．０１６，－２．２８６，－１．
２５７）点，此时ｗ＝３．０１１，广义自治系统中的极限环
ＣＹ３消失，且轨线运动到 ＣＹ３－的吸引域中，因此围
绕着极限环ＣＹ３－继续振荡并向左运动．随着极限
环的逐渐减小，振荡幅值也随之减小，直到穿过分

岔点Ｈ３－，轨线退出激发态最终收敛于稳定平衡点
Ｅ２－，直到运动到最左点 Ｐ（ｗ＝－１０．０００），完成半
个振荡周期．由于相空间的对称性，系统下半个周
期的运动机理和上半个周期的运动机理相同，直到

回到初始点Ａ，完成一个周期振荡．这里，在一个完
整的簇发周期内，轨线共经历了四个沉寂态和四个

激发态，并且沉寂态和激发态同样是由 Ｈｏｐｆ分岔
引起的，因而可以将其定义为对称式 ｄｏｕｂｌｅＨｏｐｆ／
Ｈｏｐｆ簇发．

图７　广义自治系统的相图

Ｆｉｇ．７　Ｐｈａｓｅｐｏｒｔｒａｉｔｏｆｔｈｅｇｅｎｅｒａｌｉｚｅｄａｕｔｏｎｏｍｏｕｓｓｙｓｔｅｍ

同样方法可以说明轨线在经过 Ｂ点和 Ｄ点后
的运动方向．由表１可知，在Ｂ点处广义自治系统

中同时存在稳定的极限环ＣＹ１±，ＣＹ２，ＣＹ３，而在Ｄ点

处广义自治系统中同时存在稳定的极限环 ＣＹ１±，

ＣＹ２±，ＣＹ３±．将广义自治系统中的ｗ值取为Ｂ点处

对应值５．５５２，将（１．６６８，１．４８４，－２．２２８，－０．０３９）
作为初始条件，作出广义自治系统的相图（见图７

（ａ）），可见轨迹很快稳定到极限环ＣＹ３上．由此说
明Ｂ点位于广义自治系统中极限环 ＣＹ３的吸引域
内，所以系统轨线穿过Ｂ点之后受到ＣＹ３的吸引，而
逐渐趋向于ＣＹ３．同样，将 ｗ值取为 Ｄ点处对应值
３．０１１，作出以（０．０，－０．０１６，－２．２８６，－１．２５７）为
初始条件的广义自治系统的相图（见图７（ｂ））．可
以看出系统的轨迹很快稳定到极限环 ＣＹ３－上，说
明Ｄ点位于广义自治系统中极限环ＣＹ３－的吸引域
内，所以系统轨线穿过 Ｄ点之后受到 ＣＹ３－的吸引
并逐渐趋向于ＣＹ３－，从而运动到极限环ＣＹ３－上．

由此可见，在多个吸引子共存的情况下，系统

的轨迹在运动过程中会穿过广义自治系统中不同

吸引子的吸引域，从而受到不同吸引子的吸引，改

变它的运动方向，导致了不同的簇发形式的产生．
２．３　初始点取ＳＰ３（１．４００，１．２５０，－２．２４０，０．０）

取定初始点 ＳＰ３（１．４００，１．２５０，－２．２４０，０．
０）．图８给出了系统的时间历程图．

图８　初始点取ＳＰ３时的簇发振荡的时间历程图

Ｆｉｇ．８　ＴｉｍｅｈｉｓｔｏｒｙｏｆｂｕｒｓｔｉｎｇｏｓｃｉｌｌａｔｉｏｎｆｏｒｉｎｉｔｉａｌｐｏｉｎｔＳＰ３

为了揭示该簇发现象产生的机制，图９将平衡
点曲线与转换相图进行了叠加．其中，图９（ａ）给
出了ｗｘ的对称式二维叠加图，蓝色实心原点表示
极限环ＣＹ２±．图９（ｂ）给出了ｗｘｙ的三维叠加图
（上半支），蓝色曲线表示极限环ＣＹ２＋．通过与图３
和图６的比较不难发现，系统的轨线围绕单个吸引
子振荡．

仍然假定轨线从Ａ点出发，沿着稳定的平衡点
Ｅ２＋向右运动．当经过分岔点ＢＰ＋时，Ｅ２＋失去其稳
定性并经过Ｈｏｐｆ分岔点 Ｈ２＋产生极限环 ＣＹ２＋．由
于滞后现象的存在，轨线没有因为失去稳定性而立

即产生振荡，而是沿着不稳定的平衡点 Ｅ２＋走了一
段路程，直到运动到最右点即 ｗ取得最大值 １０．
０００时向左折回运动才由于极限环 ＣＹ２＋的吸引开
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始振荡，由静息态进入激发态．当然，向右运动的
整个过程中，系统的轨线没有发生跳跃的原因是因

为轨线向右运动的整个过程中始终处于极限环

ＣＹ２＋吸引域中．之后，受到极限环 ＣＹ２＋的作用，随
着ｗ的减小，振荡幅度逐渐增大．当振荡幅值增大
到极限环ＣＹ２＋上时，轨线将围绕着该极限环继续
向左运动，直到穿过分岔点 Ｈ２＋退出激发态，轨线
受到稳定平衡点 Ｅ２＋的吸引，振荡幅值逐渐减小，
最终收敛于稳定平衡点 Ｅ２＋，回到初始点 Ａ点，完
成一个振荡周期．可以看出，整个周期振荡过程
中，系统的簇发行为同样是由一个 Ｈｏｐｆ分岔点引
起的，因此可以将其定义为 Ｈｏｐｆ／Ｈｏｐｆ簇发．由于
系统的对称性，当初始点取定为ＳＰ（－１．４００，－１．
２５０，－２．２４０，０．０）时，系统还存在一个和上述簇发
振荡相对称的吸引子（见图９（ａ））．

图９　初始点取ＳＰ３时系统平衡点曲线与转换相图的叠加

Ｆｉｇ．９　Ｏｖｅｒｌａｐｏｆｅｑｕｉｌｉｂｒｉｕｍｃｕｒｖｅｓａｎｄｔｒａｎｓｆｏｒｍｅｄｐｈａｓｅ

ｏｎｗｘｙｓｐａｃｅｆｏｒｉｎｉｔｉａｌｐｏｉｎｔＳＰ３

３　结论

对于一个四维周期激励系统，当激励频率远小

于原系统的固有频率时，系统存在两时间尺度，表

现出明显的快慢效应，从而产生各种复杂的簇发现

象．在特定的参数下通过对广义自治系统平衡点
的分岔分析，发现了在某些参数条件下存在多个吸

引子共存的现象．在相同激励幅值下取定不同的
初始点，由于广义自治系统多吸引子的共存，随着

初始点的变化，激励系统轨线运动到不同的吸引

域，从而产生不同的簇发行为，得到不同的簇发形

式．如非对称结构的 Ｈｏｐｆ／Ｈｏｐｆ簇发，对称结构的
ｄｏｕｂｌｅＨｏｐｆ／Ｈｏｐｆ簇发以及 Ｈｏｐｆ／Ｈｏｐｆ簇发．此
外，滞后现象在簇发现象中表现的较为明显．
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