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ANALYSIS OF ROUTES TO CHAOS AND BIFURCATION OF
A VIBRO-IMPACT SYSTEM

Wang Jianlong" Li Wanxiang

(School of Mechatronic Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China)

Abstract The bifurcation and the routes to chaos of the three-degree-of-freedom vibro-impact system with clear-
ance are investigated using Poincaré mapping and the computer simulation in this paper. The results show that
flip bifurcation and Hopf bifurcation exist close to the bifurcation point of the Hopf-flip codimension two bifurca-
tion. In the fixed point, the period two point is formed when Flip bifurcation firstly takes place, and the quasi-
periodic motion occurs after Hopf bifurcation. It is revealed that Hopf bifurcation, torus bifurcation and the chaos
evolution of the “subquadrate” quasi-period attractor through the numerical simulations are exhibited in Hopf-

Hopf codimension two bifurcations. The study on this vibro-impact system with clearance provides the essential

reference for its future optimize design.

Key words Poincaré map, clearance, vibro-impact, chaos, codimension two bifurcation
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