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一类冲击碰振系统的分岔及混沌演化分析

汪健龙　李万祥
（兰州交通大学机电工程学院，兰州　７３００７０）

摘要　运用Ｐｏｉｎｃａｒé映射理论与计算机仿真，研究了三自由度含间隙碰振系统的分岔和向混沌演化的道路．

结果表明，在Ｈｏｐｆｆｌｉｐ余维二分岔点附近存在倍化分岔和Ｈｏｐｆ分岔，不动点先发生倍化分岔形成周期２点，

又经过Ｈｏｐｆ分岔形成了概周期运动．ＨｏｐｆＨｏｐｆ余维二分岔通过数值仿真展现了 Ｈｏｐｆ分岔、环面分岔以及

由“近正方形”概周期吸引子转迁为混沌的奇异过程．通过对该类系统的研究，可以为工程实际中的含间隙

碰振系统的优化设计提供理论参考．
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引言

含间隙的机械构件在工程实际中普遍存在，它

是不可避免的．有间隙就会存在碰撞和冲击，这毫

无疑问会对机械设备产生不利的影响．例如，零件

组装时的间隙会影响系统的安全性和耐用性；齿

轮、连杆、轴承等传动件间的间隙会降低传动效率．

但是，一些机械设备是依靠碰撞振动来达到工作目

的，比如振动落砂机、冲击振动成型机、振动筛等．

正是由于碰撞的存在，机械系统的动力学行为会变

得更为复杂，甚至系统的拓扑结构都会改变．

学者们在这一方面进行了研究，并且得出了一

些鲜明的结论．文献［１］以两自由度分段线性系统

为研究对象，分析了在一定的参数下系统会出现

ＮｅｉｍａｒｋＳａｃｋｅｒ分岔和倍化分岔．文献［２］建立了

转子密封系统的模型，研究了气流激振力下系统

的亚谐共振问题．文献［３］研究了两自由度碰撞振

动系统的Ｈｏｐｆｆｌｉｐ余维二分岔，分析了不动点的概

周期分岔与倍化分岔．文献［４］研究了一类实际模

型冲击振动成型机的周期运动以及发生的 Ｈｏｐｆ

ｆｌｉｐ余维二分岔．数值仿真了其在该类分岔条件下

的动力学行为，并演化了通向混沌的过程．文献

［５］探讨了当碰撞振动系统发生余维二分岔时，周

期１、２点的 Ｈｏｐｆ分岔现象是存在的，并揭示了概

周期运动经环面倍化与锁相转迁为混沌的过程．文
献［６］以一单自由度含间隙的弹性约束系统为研
究模型，通过数值计算证明了 Ｈｏｐｆ分岔在单自由
度系统中的存在性．

本文以工程实际为出发点，建立了一类含间隙

的碰振模型，求出了其周期解及六维的Ｐｏｉｎｃａｒé映
射．用Ｍａｔｌａｂ编程仿真系统的周期运动［７－８］与过渡

到混沌的过程．文中主要研究了余维二分岔点［９］附

近复杂的动力学特性，用 Ｐｏｉｎｃａｒé映射投影图、相
图、时间历程图、分岔图形象地展示了系统随参数

变化而出现的分岔［１０－１１］行为．

１力学模型及运动微分方程

图１表示存在间隙的三自由度相对碰撞振动
系统的动力学模型，工程实际中许多部件的碰撞可

认为此模型的简化．如图１所示整个模型由质量
块、弹簧和阻尼器相连接而成．弹簧刚度分别为
Ｋ１、Ｋ２、Ｋ３、Ｋ４，阻尼系数分别为 Ｃ１、Ｃ２、Ｃ３、Ｃ４，假定
质量块Ｍ１、Ｍ２、Ｍ３只在垂向运动，三个振子受到的
简谐激振力为 Ｐｉｓｉｎ（ΩＴ＋τ）（ｉ＝１，２，３），当满足
关系Ｘ１－Ｘ３＝Δ时，质量块 Ｍ１将与质量块 Ｍ３发
生碰撞．这里的阻尼为 Ｒａｙｌｅｉｇｈ型比例阻尼，碰撞
过取决于碰撞恢复系数Ｒ，不计碰撞时间．

在连续两次碰撞之间，该碰振系统无量纲化的

运动微分方程表示为：
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图１　系统力学模型图
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式中，“ｘｉ”和“̈ｘｉ”（ｉ＝１，２，３）依次表示振子 Ｍｉ的

位移ｘｉ对时间ｔ的一阶导数和二阶导数．其中无量
纲为：

μｍｉ＝
Ｍｉ
Ｍ１
，μｃｉ＝

Ｃｉ
Ｃ１
，μｋｉ＝

Ｋｉ
Ｋ１
，μｃｉ＝μｋｉ

ζ＝
Ｃ１

２ Ｋ１Ｍ槡 １

，ｆｉ０＝
Ｐｉ
Ｐ０
，δ＝

Δ·Ｋ１
Ｐ０

ω＝Ω
Ｍ１
Ｋ槡１
，Ｐ０＝ Ｐ１

２＋Ｐ２
２＋Ｐ３槡

２

ｔ＝Ｔ
Ｋ１
Ｍ槡１
，ｘｉ＝

Ｘｉ·Ｋ１
Ｐ０

，（ｉ＝１，２，３

















 ）

（３）

振子Ｍ１与Ｍ３碰撞时的冲击方程及Ｒ为：
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式中，下标“＋”和“－”分别表示碰撞瞬时前后．
下面对方程（１）解耦，令 ψ为正则模态矩阵，

ωｎ１和ωｎ２是无碰撞振动情况下系统的固有频率．这
里取ψ为变换矩阵，做如下的坐标变换

Ｘ＝ψξ （５）
式中，Ｘ＝（ｘ１，ｘ２）

Ｔ；ξ＝（ξ１，ξ２）
Ｔ．

经过坐标变换，方程（１）可以写为：
Ｉ̈ξ＋Ｃξ＋Λξ＝Ｆｓｉｎ（ωｔ＋τ） （６）

式中，Ｉ是２×２阶单位矩阵；Ｃ和Λ是２×２阶对角
矩阵，Ｃ＝ｄｉａｇ［２ζω２ｎ１，２ζω

２
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由振型叠加法可得到方程（１）通解表达式为：
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方程（２）的通解表达式为：
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式中，ψｉｊ为正则模态矩阵ψ的元素；ηｊ＝ζωｎｊ
２，ωｄｊ＝

ωｎｊ
２－ηｊ槡

２，ａｊ和ｂｊ是积分常数，可通过系统的初始

条件和模态参数确定；Ａｊ和Ｂｊ为振幅常数，可通过
稳态解回代求得（ｊ＝１，２，３）．

２　碰撞振动系统的Ｐｏｉｎｃａｒé映射

为了分析碰撞振动系统的概周期运动和相关

的分岔问题，通常要确定 Ｐｏｉｎｃａｒé映射，并且基于
以上周期解，可以写出扰动解．定义截面σ为：

σ＝ （ｘ１，ｘ１，ｘ２，ｘ２，ｘ３，ｘ３，θ）∈Ｒ
６×Ｓ{ ，

　ｘ１－ｘ３＝Δ，ｘ１＝ｘ１＋，ｘ３＝ｘ }３＋

式中，θ＝ωｔｍｏｄ２π．
这里将截面σ作为Ｐｏｉｎｃａｒé截面．建立周期运

动的映射方程：

Ｘ′＝ｆ
～
（ｖ，Ｘ） （９）

式中，ｖ∈Ｒ１；Ｘ＝Ｘ ＋ΔＸ，Ｘ′＝Ｘ ＋ΔＸ′，Ｘ ＝
（ｘ１０，ｘ１＋，ｘ２０，ｘ２０，ｘ３＋，τ０）

Ｔ表示位于在 Ｐｏｉｎｃａｒé截
面σ上的周期ｎ单碰撞不动点，ΔＸ与ΔＸ′是扰动．

文中用ｑ＝ｐ／ｎ来表示周期运动，其中 ｎ表示
周期数，ｐ表示对应的碰撞次数．当系统受到扰动
后，在Ｍ１与Ｍ３碰撞后的瞬时，令时间 ｔ为０，那么

２０４
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下一次发生碰撞前的时间为：

ｔｅ＝（２ｎπ＋Δθ）／ω（ｎ∈Ｚ），Δθ＝Δτ′－Δτ．
由边界条件可推得周期运动的Ｐｏｉｎｃａｒé映射为：
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式中，ｘ１０表示未受扰动时质量块Ｍ１在ｔ＝０时刻碰
后的位移，ｘ２０同上．且
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从而建立Ｐｏｉｎｃａｒé映射，简要地表示成：

ΔＸ′＝ｆ
～
（ｖ，Ｘ）－Ｘ ＝

Ｄｅｆ
ｆ（ｖ，ΔＸ） （１１）

（１１）式位于不动点处的雅克比矩阵为

Ｄｆ（ｖ，０）＝ｆ（ｖ，ΔＸ）
ΔＸ （ｖ，０）

（１２）

式中，ν∈Ｒ表示分岔参数，为系统参数之一．
利用（１２）式的特征值可判别系统周期运动的

稳定性．若线性化矩阵Ｄｆ（ｖ，０）的全部特征值都位
于复平面单位圆的内部，那么周期运动是稳定的．
只要特征值穿越单位圆的情况存在，系统的周期运

动将会出现分岔．一般来说，由特征值穿越单位圆
的位置和数量来决定分岔为何种类型．

３　数值仿真

选择一组无量纲系统参数值：

ｕｍ３＝１．７５，ｕｍ２＝０．６５，ｕｋ２＝１．１５，ｕｋ３＝０．
０１６，ｕｋ４＝１．０５，ζ＝０．００２，Ｒ＝０．６５，δ＝０．０２５．
将激励频率ω作为分岔参数，特征值的穿越趋势见

图２，依据判断条件可知满足Ｈｏｐｆｆｌｉｐ余维二分岔．
即有一对复共轭特征值和一个－１的实特征值横截
单位圆周，剩下的特征值都位于单位圆的内部．

图２　特征值穿越单位圆周

Ｆｉｇ．２　Ｖａｒｉａｔｉｏｎｏｆｅｉｇｅｎｖａｌｕｅｓｉｎｓｉｄｅｔｈｅｕｎｉｔｃｉｒｃｌｅ

进行数值编程仿真，当ω＜ωｃ＝２．０５６时，该系
统处于稳定的 ｑ＝１／１周期运动，在 Ｐｏｉｎｃａｒé截面
上则为一个ｑ＝１／１不动点；随着激励频率 ω的递
增，当ω＝２．０６２时，稳定的 ｑ＝１／１不动点发生倍
化分岔与 Ｈｏｐｆ分岔，变为 Ｔ２／２吸引不变环，如图３
（ａ）、３（ｂ）；

图３　Ｐｏｉｎｃａｒé映射投影图

Ｆｉｇ．３　ＰｒｏｊｅｃｔｉｏｎｄｒａｗｏｆＰｏｉｎｃａｒéｍａｐ

３０４
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若激励频率进一步增加，吸引不变圈的环面发生振

荡，如图３（ｃ）；当激励频率 ω＝２．０７２时，Ｔ２／２环失
稳，发生了环面倍化，在 Ｐｏｉｎｃａｒé截面上形成２Ｔ２／２
吸引不变环，如图３（ｄ）；若激励频率 ω继续递增，
２Ｔ２／２环面发生振荡，如图 ３（ｅ）；当激励频率 ω＝
２．０７４时，系统经环面倍化转迁为混沌，如图３（ｆ）．

为了进一步分析系统处于混沌运动时的动力

学行为，在ω＝２．０７４的条件下，通过编程分别仿真
了３个质量块的相图和时间历程图，如图４．由于
质块Ｍ１和Ｍ３在运动的过程中会发生碰撞，所以
其相图与质块Ｍ２的相图是有区别的．从图４（ａ）、４
（ｅ）中，可知碰撞时“位移不变，速度突变”．从时间
历程图可以看出，此时系统运动呈非周期性，即处

于混沌运动．

图４　ω＝２．０７４，相图和时间历程图

Ｆｉｇ．４　Ｐｈａｓｅｄｉａｇｒａｍｓａｎｄｔｉｍｅｈｉｓｔｏｒｙｄｉａｇｒａｍｓｗｈｅｎω＝２．０７４

取无量纲系统参数值为：ｕｍ３＝１．１，ｕｍ２＝０．４４，

ｕｋ２＝１．１５，ｕｋ３＝０．５９，ｕｋ４＝０．５，ζ＝０．０，Ｒ＝０．８１，δ
＝０．０２６．以激励频率ω作为分岔参数，数值仿真不
动点邻域内的特征值发展趋势，系统特征值的穿越

见图５．当 ω逐渐减小经过 ωｃ＝１．３３８时，出现了
两对复共轭特征值穿越情况，满足 ＨｏｐｆＨｏｐｆ余维

二分岔的条件．图６（ａ）为分岔图，从图中可以看出
系统的分岔行为，图６（ｂ）为图６（ａ）的局部放大
图．在分岔图中难以辨别概周期运动和混沌运动，
因此还需进行进一步的分析．

图５　特征值穿越单位圆周

Ｆｉｇ．５　Ｖａｒｉａｔｉｏｎｏｆｅｉｇｅｎｖａｌｕｅｓｉｎｓｉｄｅｔｈｅｕｎｉｔｃｉｒｃｌｅ

图６　分岔图

Ｆｉｇ．６　Ｂｉｆｕｒｃａｔｉｏｎｄｉａｇｒａｍｓ

在这组参数值下进行数值仿真，如图７所示．
随着激励频率ω的减小，当ω＝１．３３８时，稳定的ｑ
＝１／１不动点发生 Ｈｏｐｆ分岔，Ｐｏｉｎｃａｒé截面上形成
一个不变圈，系统呈现概周期运动，如图 ７（ａ）所
示；当激励频率继续减小时，吸引不变圈的光滑性

逐渐减弱并发生振荡，如图７（ｂ）；当激励频率 ω＝

１．３２６８７时，概周期吸引子发生环面分岔，变为“带
状”型，如图７（ｃ）；随着激励频率 ω进一步远离分
岔点时，产生了奇特的“近正方形”概周期吸引子，

如图７（ｄ）；当激励频率 ω＝１．３２１时，退化出５Ｔ１／１
吸引环，如图７（ｅ）；继续减小激励频率 ω，吸引不

４０４



第５期 汪健龙等：一类冲击碰振系统的分岔及混沌演化分析

变环转化为半吸引的，运动最终经半吸引不变环通

向混沌，如图７（ｆ）．图８为 ω＝１．３２０８时，质量块
Ｍ１的相图和时间历程图，由图可知系统处于混沌
状态，从而证实了前面分析方法的正确性．

图７　Ｐｏｉｎｃａｒé映射投影

Ｆｉｇ．７　ＰｒｏｊｅｃｔｉｏｎｄｒａｗｏｆＰｏｉｎｃａｒéｍａｐ

图８　Ｍ１的相图和时间历程图

Ｆｉｇ．８　ＰｈａｓｅｄｉａｇｒａｍｓａｎｄｔｉｍｅｈｉｓｔｏｒｙｄｉａｇｒａｍｓｏｆＭ１

４　结论

（１）通过数值仿真揭示了含间隙三自由度系
统的周期运动转迁为混沌运动的两条道路．在
Ｈｏｐｆｆｌｉｐ分岔中即存在倍化分岔，也存在周期２的
Ｈｏｐｆ分岔和环面倍化．当系统发生 ＨｏｐｆＨｏｐｆ分岔
时，可通过环面分岔形成非常规“近正方形”概周

期吸引子，展现了向混沌演化的精彩过程．
（２）由分析可知，系统参数的选取对机械的振

动特性有很大影响，当参数变化时，机械系统可能

产生复杂的分岔与混沌现象．因此，文中的参数范
围可以作为机械系统优化设计的依据．

（３）文中的研究方法与所得的结论可以推广
到其它含间隙的多自由度碰撞振动模型，为这些模

型的研究分析提供有益参考，同时也是混沌控制的

基础理论．
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